MATTER

OBJECTIVE #1: Identify and Describe Phases of Matter

	Solid	Liquid	Gas
Shape			
(Has a fixed shape or takes			
the shape of the container)			
Volume			
(Has a fixed volume or			
takes the volume of the			
container)			
Density			
(high or low)			
Particle arrangement			
(rigid or free)			
Attraction			
(particles are highly			
attracted and close or			
weakly attracted and			
spread out)			

a. Which of the following hat - HCl _(g)	as a definite shape? - H ₂ O _(l)	- Cu _(s)
b. Which of the following had - LiF_(g)	as a definite volume? - Br _{2(l)}	- Mg _(s)
c. Which substance has neith - Cl _{2 (g)}	her a definite shape or a def - CCl _{4 (l)}	fine volume? - NaCl _(s)

OBJECTIVE #2: Solve for Density and Percent Error

A) Density is the measurement of mass divided by volume. For solids and liquids, the unit for density is g/mL or g/cm³ (1 mL = 1 cm³) For gases, which require a large amount to have a measurable density, the units for density are g/L. A substance's density can help identify it. For example, water has a density of 1.00 g/mL, and gold has a density of 19.3 g/mL.

The formula can be found on Reference Table T:

Table T Important Formulas and Equations

Density	$d = \frac{m}{V}$	d = density m = mass V = volume
---------	-------------------	---------------------------------------

a. Calculate the density of 5.00 gram sample of an unknown substance, which has a volume of 5.15mL.

b. Using Reference Table S, identify the unknown substance in question (a) above.

c. Calculate the mass of a substance with a density of 2.50 g/mL and a volume of 23.0mL.

d. Calculate the volume of a metal rectangle with a height of 2.0cm, a length of 3.0cm, and a width of 1.0cm.

e. If the metal in question (d) above is iron, calculate the mass. (<u>Hint:</u> density is on table S)

- B) **Percent Error:** The most common way to analyze experimental error is to compare your results with a known value (if available). The formula for percent error is also on Reference Table T.
 - The lower the percent error (0 10%), the better the results of an experiment.

1

* measured value is what YOU get during experiment* accepted value is what you SHOULD have gotten

Use the following data as an example.

Density of water
(actual or known value)
1.00 g/mL

Given these two numerical values, percent error can be calculated as follows:

a. A student determines the density of an object to be 6.82 g/mL. The accepted value is 6.93 g/mL. Calculate the student's percent error.

b. A student determines the density of Zinc to be 7.56 g/mL. Using Reference Table S, determine the accepted value for the density of Zinc. Then determine the student's percent error.

OBJECTIVE #3: Unit and Prefix Conversions

Reference Table D contains the selected units of measurements, with symbols, names and the quantity it represents. This table is also commonly called selected **BASE** units.

Selected Unit	.5
Name	Quantity
meter	length
gram	mass
pascal	pressure
kelvin	temperature
mole	amount of substance
joule	energy, work, quantity of heat
second	time
minute	time
hour	time
day	time
year	time
liter	volume
parts per million	concentration
	Name meter gram pascal kelvin mole joule second minute hour day year liter parts per million

molarity

atomic mass unit

Μ

u

solution

concentration

atomic mass

Table D Selected Units Reference Table C contains the selected prefixes that are available for converting base units into smaller or larger increments.

Table CSelected Prefixes

Factor	Prefix	Symbol
10^{3}	kilo-	k
10^{-1}	deci-	d
10-2	centi-	с
10-3	milli-	m
10-6	micro-	μ
10-9	nano-	n
10^{-12}	pico-	р

The value of a base unit (staring measurement) is a "factor" of 1, or 10⁰.

It would be located between the kiloand deci- prefix.

When converting between a base unit to prefix, or prefix to prefix, a number line like the one below can help indicate what direction (left or right) to move the decimal point, as well as how many placeholders to move it.

How many milliliters are equal to 9.62 L?	How many kilojoules are equal to 540.3 J?
How many kilograms are equal to 0.08051 g?	How many nanometers are equal to 2.05 m?
How many centimeters are equal to 2.2 km?	How many picograms are equal to 0.359 mg?

OBJECTIVE #4: Classify and Describe Types of Matter

Matter can be grouped or classified into two main categories: Pure Substances or Mixtures. From there, pure substances can be broken down into elements or compounds; mixtures can be broken down into homogeneous or heterogeneous.

Practice: Classification of Matter

Classify each of the following with the combination of terms listed below. <i>pure substance – element</i> <i>pure substance – compound</i> <i>mixture – homogeneous</i> <i>mixture – heterogeneous</i>					
1. HCl _(aq)	2. sugar (C ₁₁ H ₂₂ O ₁₁)	3. KBr _(s)	4. Soil		
5. Cl _{2 (g)}	6. water	7. CH ₂ (OH) _{2 (ac}	a) 8. Sodium		
9. Matter that is composed of classified as	of two or more different	elements chemically co	ombined in a fixed proportion is		
(1) a compound	(2) an element	(3) a mixture	(4) a solution		
10. A compound differs from (1) is homogeneous (2) has a definite com	10. A compound differs from an element in that a compound(1) is homogeneous(3) has a definite melting point(2) has a definite composition(4) can be decomposed by a chemical reaction				
 11. A compound differs from a mixture in that a compound always has a (1) homogeneous composition (2) maximum of two elements (3) minimum of three elements (4) heterogeneous composition 					
12. A heterogeneous material may be (1) an element(2) a compound(3) a pure substance(4) a mixture					
 13. Which statement is an identifying characteristic of a mixture? (1) a mixture can consist of a single element (2) a mixture can be separated by physical means (3) a mixture must have a definite mass (4) a mixture must be homogeneous 					
14. Which must be a mixture of substances? (1) solid(2) liquid(3) gas(4) solution					
15. Which substance can be (1) aluminum	decomposed by chemic (2) octane	cal means? (3) silicon	(4) xenon		
16. Which substance cannot be broken down by a chemical reaction?(1) ammonia(2) argon(3) methane(4) water					
17. Two substances, A and Z, are to be identified. Substance A cannot be broken down by a chemical change. Substance Z can be broken down by a chemical change. What can be concluded about these substances?					
(1) Both substances are(2) Both substances are	elements. (3) Sub compounds. (4) Sub	stance A is an element a stance A is a compound	and substance Z is a compound. and substance Z is an element.		
18. Which terms are used to	identify pure substance	es?			
(1) an element and a mixture (2) an element and a compound (3) a solution and a mixture (4) a solution and a compound					

19. Two different samples decompose when heated. Only one of the samples is soluble in water. Based on this information, these two samples are

- (1) both the same element
- (2) two different elements

- (3) both the same compound
- (4) two different compounds

20. Tetrachloromethane, CCl₄, is classified as a

- (1) compound because the atoms of the elements are combined in a fixed proportion
- (2) compound because the atoms of the elements are combined in a proportion that varies
- (3) mixture because the atoms of the elements are combined in a fixed proportion
- (4) mixture because the atoms of the elements are combined in a proportion that varies

Practice: Particle Diagrams

- a) Classify each of the pictures below as:
 - A = Element
 - B = Compound
 - C = Mixture of elements

D = Mixture of Compounds

E = Mixture of Elements and Compounds

**Each circle represents an atom and each different color represents a different kind of atom. If two atoms are touching then they are bonded together.

c) In terms of composition/type of atoms, what is the difference between a monatomic element and a diatomic element?

d) Use the following key for the questions below:

8 atoms of element X

4 molecules of compound. X_2Z in *liquid* form

 \bigcirc = element X

Homogeneous mixture of element Z with element X (5 atoms of each element)

 \bigcirc = element Z

OBJECTIVE #5: Understand the Law of Conservation of Matter (Mass)

Rule: Matter (mass) cannot be created nor destroyed during an ordinary chemical reaction

Chemical Reaction: ______ → _____ (ending substances)

- During a chemical reaction, bonds break, atoms rearrange and new bonds reform.
 - However, the number & type of atoms cannot change during physical or chemical changes

Example:	2 NaCl →	2 Na +	CI_2
	15.5 g	12.2 g	? g

- For the following reaction: $CH_4(g) + H_2O(g) \rightarrow 3H_2(g) + CO(g)$, 2.55 grams of CH_4 and 3.48 g of a. H₂O are combined in a sealed container. What will be the mass of the two products combined?
- b. In the following reaction: Mg(s) + 2 HCl (l) \rightarrow MgCl₂(l) + H₂(g), 3.50 grams of Mg are added to 10.0 g of HCl. If 12.9 grams of MgCl₂ are produced, how much hydrogen is also produced?

OBJECTIVE #6: Identify and Describe Changes in Matter

There are two main types of changes matter can undergo: physical changes and chemical changes.

Physical Properties/Changes – change the features of a substance without changing the identity

Chemical Properties/Changes – changes in the chemical composition of the substance, and will make substances change into new substances and change properties					
1. Label the following as phy	Practice: Physical a ysical (P) or chemical (C	and Chemical C) properties:	Changes		
texture:	flammable:		boiling point	·	
odor:	color:		chemical con	position:	
2. Label the following as physical (P) or chemical (C) changes:					
corrosion:	melting:		mixing:		
freezing:	cutting:		decaying:		
3. Chemical properties can b a) determine the temp b) determine the dens	e used to perature of a substance sity of a substance	c) diff d) diff	ferentiate betwo	een two compounds een two mixtures	
 4. Which change is most likely to occur when a molecule of H₂(g) and O₂(g) collide properly? a) a chemical change, because a compound will be formed b) a chemical change, because a new element will be formed c) a physical change, because a compound will be formed d) a physical change, because a new element will be formed 					
5. Which of the following is a) magnetic	not a physical property? b) crystalline	c) oxi	dize	d) powdered	
6. Which of the following isa) boils	a chemical property? b) dissolves	c) sub	limes	d) reacts	

OBJECTIVE #7: Identify and Describe How to Separate Mixtures

A) Homogeneous Mixtures

a. Distillation

A process that separates out a substance dissolved in water

by their _____

Examples: Carbon dioxide from Soda Gasoline dissolved in Crude Oil Salt dissolved in water

During distillation, the mixture is <u>HEATED</u> until the component (part) with the ______ boiling point has been reached. This part then begins to turn into a gas vapor, and leaves the main flask to be condensed into a liquid elsewhere in the setup.

b. Chromatography

A process that separates out the components (parts) of a homogeneous

mixture based on ______ and/or _____

to the chromatography filter paper

Example: Black ink

- If the molecule is large and/or <u>strongly attracted</u> to the paper, it will <u>move slowly</u>;
- If the molecule is small and/or <u>not very attracted</u> to the paper, it will <u>move quickly</u> up the paper

B) Heterogeneous Mixtures

a. Filtration

A process that separates a solid from a liquid it is contained in based on particle

- If the particle size is small enough, they will <u>pass</u> the filter paper
- o If the particle size is too large, it will be <u>retained</u> in the filter paper

1. By using a paper filter, which of the following can be separated?
a) two liquids mixed together
b) two solids mixed together
c) a solid mixed in a liquid
d) a gas mixed in a liquid

2. Equal amounts of ethanol (rubbing alcohol) and water are mixed at room temperature. Which process is used to separate the ethanol from the water?

a) reduction b) distillation

- c) filtration d) ionization
- 3. Crude oil is separated into its components by
 - a) fractional distillation
 - b) filtration

4. The principle that allows paper chromatography to separate mixtures depends on the components of the mixtures having

- a) different boiling pointsb) different attractive forces
- c) different densities

c) column chromatography

d) paper chromatography

d) similar solubility in water

Paper Chromatography