Chemical Bonding

OBJECTIVE #1: Know what a chemical bond is

- A) Chemical Bond: the ______ forces that hold all molecules and compounds together
 - atoms bond together for greater _____
 - \circ $\;$ this is why noble gases in group 18 don't typically bond $\;$

This stability comes from an atom attaining an _____, which is having ______, valence electrons

- \circ $\;$ atoms then become like a noble gas $\;$
 - metals ______ electrons and become like the noble gas in the ______ row
 - nonmetals _______ electrons become like the noble gas in the row

OBJECTIVE #2: Know the energy changes when breaking and making bonds (B.A.R.F.)

- A) To break a chemical bond, energy is ______ by the system
 - this means that energy will be _____ (_____thermic) when breaking apart 2 or more atoms
- B) When forming a chemical bond, the energy that was absorbed to break the bond is now
 - _____thermic) by the system

Since the point of atoms bonding together is for stability, ______ bonds is favored over

bonds.

Bonding Introduction Questions				
1. Which noble gas does nitro	ogen become like whe	en forming a bond?	d) argon	
a) helium	b) neon	c) lithium		
2. Which noble gas does mag	gnesium become like v	when forming a bond?	d) argon	
a) helium	b) neon	c) sodium		
 Which kind of energy is stored a) potential energy 	ored in a chemical bor b) kinetic energy	nd? c) activation energ	gy d) ionization energy	
4. Given the balanced equati during this reaction?a) energy is absorbedb) energy is absorbed	on: H₂ + energy → H	I + H Which st	atement describes what occurs	
	l as a bond is formed	c) energy is r	eleased as a bond is formed	
	l as a bond is broken	d) energy is r	released as a bond is broken	

OBJECTIVE #3: Know the three types of bonds that can be formed (T.I.C.S.)

The type of bond formed typically depends on the type of elements involved in the chemical bonding.

	A) Ioni	Ionic Bond: made up of one and one				
		examples: NaCl, KBr,	FeO, MgS			
		- the atoms in an ion	ic bond	val	ence electrons	
		\circ the metal at	om always	elec	trons and becomes	
			cha	arged; the nonmetal	atom always	
		electrons ar	d becomes		_charged	
		 The opposit 	ely charged ions	then	one anot	her
	B) Cov	alent Bond (Molecular	Substances): ma	de up of two or mor	e	
		examples: CO, H ₂ SO ₄ ,	CH ₄ , NO ₂ , Br ₂			
		- the atoms in a cova	lent bond	v	valence electrons	
		0	bet	ween atoms can be	equal or it can be une	qual
	C) Me	tallic Bond: made up of		only		
		Examples: Hg, Mg, Fe	, Ni			
	 the atoms in a metallic bond valence electrons equally among 					among
	ALL metal atoms in a sample					
	 this phenomenon is known as a "" of mobile electrons 					
*	** It is possible to have a compound with both ionic and covalent bonding.					
	- The bond needs a metal and nonmetal					
	- The bond needs at least two nonmetals					
	Examples: Fe(OH) ₂ , MgSO ₄ , KC ₂ H ₃ O ₂					
1	1. Describe	the following as ionic, r	netallic or covale	ent:		
	NaCl		Al		PI ₃	
	CO ₂		$C_6H_{12}O_6$		Ca ₃ (PO ₄) ₂	
	Au		Ti		H ₂ S	
	MgBr ₂		KNO₃		Fe	
	CH4		H ₂ O		K2O	

OBJECTIVE #4: Know the properties for each type of chemical bond (@ room temperature)

Bonding Property Questions					
1. Based c a)	on bond type, whicl CH₃OH	h compound has the h b) C_6H_{14}	ighest melting point? c) CaCl ₂	d) CCl ₄	
2. Which (a) b)	characteristic is a p good heat conduct electrical conductiv	roperty of molecular s ivity vity	ubstances with covale c) low melting point d) high melting point	nt bonds?	
 3. A solid substance is an excellent conductor of electricity. The chemical bonds in this substance are most likely a) ionic, because the valence electrons are shared between atoms b) ionic, because the valence electrons are mobile c) metallic, because the valence electrons are stationary d) metallic, because the valence electrons are mobile 					
4. The hi a) b)	gh electrical condu high ionization ene filled energy levels	ctivity of metals is prin ergies	marily due to c) mobile electrons d) high electronegati	vities	
 5. A solid sample of a compound and a liquid sample of the same compound are each tested for electrical conductivity. Which test conclusion indicates that the compound is ionic? a) Both the solid and the liquid are good conductors. b) Both the solid and the liquid are poor conductors. c) The solid is a good conductor, and the liquid is a poor conductor. d) The solid is a poor conductor, and the liquid is a good conductor. 					
6. Which s a)	 Which sample of matter has a crystalline structure? a) Hg(I) b) H₂O(I) c) NaCl(s) d) CH₄(g) 				
7. Which (a)	 7. Which of the following solids has the lowest melting point? a) H₂O(s) b) Na₂O(s) c) MgO(s) d) FeO(s) 				
8. Which t a)	type of substance is covalent solid	s soft, has a low meltir b) ionic solid	ng point, and is a poor c) metallic solid	conductor of electricity? d) network solid	
9. Which e a)	element consists of sulfur	positive ions immerse b) nitrogen	ed in a "sea" of mobile c) calcium	electrons? d) chlorine	

OBJECTIVE #5: Know how to draw Ionic Dot Diagrams

Structures called Lewis Electron Dot Diagrams are used when illustrating a chemical bond between two

or more atoms. Only the ______ electrons are used in chemical bonding, which is the number of an atom's electron configuration.

Electron Lewis Dot Diagrams (where "X" is a given element)

Х

Li	Ca	AI
С	Ν	0
F	Ne	

Steps in drawing ionic dot diagrams

Step 1: Determine number of valence electrons each atom has and draw dot diagrams for each atom present

Note: a subscript that *follows* the element symbol indicates the number of that atom
 o ex: Li₂S has 2 lithium atoms and 1 sulfur atom

Step 2: Show the transfer of electrons from the metal atom(s) to non-metal atom(s)

- can only transfer to available bonding sites
 - \circ where there is not a pair of electrons already (••)

Step 3: Show the resulting charged ions with appropriate charges and valence electrons

the metal should always end up without any valence electrons and a ______

charge; the non-metal should always end up with an octet and a _____

charge

Examples:

NaCl	K ₂ O
MgO	MgCl ₂

AI_2O_3

OBECTIVE #6: Know how to Write and Name Ionic Compounds

A) Creating Ionic Formulas

- 1) Metal atom always comes first, non-metal atom goes second in a formula
- 2) Total positive charge on the metal atom must cancel total negative charge on the non-metal atom and the ionic compound must be neutral (charge of zero)
 - a. If more than one of an element is needed, a subscript *follows* that atom to indicate more than one

Ex) $K_2O = 2$ K atoms and 1 O atom Ex) $FeBr_2 = 1$ Fe atom and 2 Br atoms

3) When using a polyatomic ion from Reference Table E, the charge that is used is only that which is in upper right hand corner of the group of bonded atoms

Ex) $Cr_2O_7^{-2}$ = the entire group of bonded atoms (Cr_2O_7) has an overall charge of -2

Ex) CN⁻ = both the C and N together (CN) have a charge of -1

a. If more than one polyatomic ion is needed to allow the compound to be neutral, parentheses() must be placed around the polyatomic ion and the subscript follows outside the ()

Examples:

Ca ⁺² O ⁻²	Mg ⁺² NO ₃ ⁻¹
Li ⁺¹ S ⁻²	Ni ⁺² OH ⁻¹
Fe ⁺² P ⁻³	NH4 ⁺¹ Cl ⁻¹

B) Naming Ionic Compounds

- 1) The metal comes first in the compound, and the name doesn't change at all
 - a. If the metal atom has more than one charge listed on the periodic table, however, a roman numeral must be used to indicate which charge is being used

I = +1	III = +3	V = +5	VII = +7
II = +2 IV	= +4 VI =	= +6	

Ex) Fe can be Fe⁺² or Fe⁺³ Fe⁺² is called Iron II and Fe⁺³ is called Iron III

Ex) Au can be Au⁺¹ or Au⁺³ Au⁺¹ is called Gold I and Au⁺³ is called Gold III

2) The non-metal is second in the formula, and the name changes to have an - ide ending

Ex) oxygen = oxide nitrogen = nitride phosphorus = phosphide chlorine = chloride

3) If a polyatomic ion is second in the formula, the name is whatever it is on Reference table E

Examples:

MgCl ₂	
LiBr	
FeO	
Fe ₂ O ₃	
CuOH	
Ca(NO ₃) ₂	
NiSO ₄	

	Table E	
Selected	Polyatomic	lons

Formula	Name	Formula	Name
H_3O^+	hydronium	CrO42-	chromate
Hg_{2}^{2+}	mercury(I)	Cr ₂ O ₇ ²⁻	dichromate
NH_4^+	ammonium	MnO ₄ ⁻	permanganate
С ₂ H ₃ O ₂ -)	acetate	NO ₂ ⁻	nitrite
CH ₃ COO−∫		NO ₃ -	nitrate
CN-	cyanide	0, ² -	peroxide
CO3 ²⁻	carbonate	OH-	hvdroxide
HCO_3^-	hydrogen carbonate	PO4 ³⁻	phosphate
C ₂ O ₄ ²⁻	oxalate	SCN-	thiocyanate
ClO-	hypochlorite	SO3 ²⁻	sulfite
ClO ₂ -	chlorite	SO4 ²⁻	sulfate
ClO ₃ -	chlorate	HSO ₄ ⁻	hydrogen sulfate
ClO ₄ ⁻	perchlorate	S2022-	thiosulfate

C. Ionic Compound Formulas

_

- 1) The name of the metal comes first in the compound, and it will always have a positive charge
 - If a roman numeral is given, that is the positive charge to be used for the metal
 - $\circ~$ ex) Iron II is going to be Fe^{+2} and iron III is going to be Fe^{+3}
 - If there is no roman numeral given, you will need to look up the positive charge o ex) Zinc will be Zn⁺²
- 2) The non-metal will be second in the formula, with the name changed to have an –ide ending

 look up the symbol and find the <u>first</u> negative charge of the non-metal element
 ex) oxide (oxygen) will be O⁻² and nitride (nitrogen) will be N⁻³

3) If a polyatomic ion is second in the name, use the formula and negative charge that is on Reference table E

- 4) Total positive charge on the metal atom must cancel total negative charge on the non-metal atom and the ionic compound must be neutral (charge of zero)
 - If more than one of an atom or group of atoms is needed, a subscript follows that atom (or polyatomic ion) to indicate more than one
 - The subscripts MUST be in lowest terms

Examples:

Silver bromide	Copper I hydroxide
Iron III sulfide	Zinc carbide
Calcium nitrate	Cobalt III nitride

	Naming and Formula Writing Practice					
 The correct name of the compound with the formula PbO₂ is a) lead I oxide b) lead II oxide c) lead III oxide d) lead IV oxide 						
2. The correc a) C	2. The correct formula for the compound Cobalt III hydroxide is a) CoH ₃ b) Co ₃ OH c) CoOH ₃ d) Co(OH) ₃					
 3. The correct name for the formula NaClO₃ is sodium a) chloride b) chlorate c) perchlorate d) chlorite 						
4. The formula for potassium chlorite is a) KClb) KClOc) KClO2d) KClO3						

OBJECTIVE #7: Know the Types and Number of Covalent Bonds

Refresh:

Covalent Bonds are formed when 2 or more ______ atoms _____

valence electrons to achieve an octet

- \circ duet (2 v.e.⁻) for hydrogen
- A compound that has covalent bonding is called ______ substance
- A) Two types of Covalent Bonds:

When two non-metals try and form a bond, they both are trying to _______ electrons to obtain an octet, so <u>electronegativity</u> (the attraction an atom has for its electrons) is used to determine what type of covalent bond will be formed

a) Nonpolar covalent bond: ______ sharing of valence electrons between two non-metals

ex) Br₂, I₂, N₂, Cl₂, H₂, O₂, F₂

b) Polar covalent bond: ______ sharing of valence electrons between two non-metals

ex) H₂O, NH₃, CH₄, SO₂, CH₂Cl₂

Electronegativity Difference (END) Number Line

- The larger the END value, the more polar the bond and the greater the ionic character
- The smaller the END value, the more non-polar the bond and the greater the covalent character

How to calculate bond polarity

HCI	NH ₃	F ₂	OCl ₂	HF

1. Which of the following bonds is the most polar bond in nature?					
a) Cl ₂	b) HCl	c) HBr	d) HI		
 2. Which type of bond is formed between two atoms of chlorine? a) polar covalent b) nonpolar covalent c) metallic d) ionic 					
3. Which formula represents a molecule with a polar covalent bond?					
a) LICI	D) N ₂	C) HCI			

- B) Number of Covalent Bonds
 - a) Single covalent bonds: two non-metal atoms share _____ pair of valence electrons between them (2 v.e.⁻)

b) Double Covalent bonds: two non-metal atoms share ______ pairs of valence electrons between them (4 v.e.⁻)

c) Triple Covalent bonds: two non-metal atoms share ______ pairs of valence electrons between them (6 v.e.⁻)

OBJECTIVE # 8: Know how to draw Covalent Dot Diagrams

- 1. Calculate the total number of valence electrons for the molecule by adding up the number of valence electrons for each atom.
- 2. Determine which atom is going to be the "central atom" this is the non-metal atom furthest from an octet

*Hydrogen can never be the central atom because it only needs one more electron to fill 1st energy level with two valence electrons (like Helium)

- 3. Distribute remaining atoms in the formula around the central atom. For every bond formed around the central atom, two valence electrons should be placed between them. (Remember that hydrogen can only make one single covalent bond.)
- 4. Distribute the remaining electrons as pairs to the central atom (or atoms), after subtracting the number of electrons already distributed from the total of valence electrons calculated in Step 1.

*If there are fewer than 8 electrons on the central atom, this suggests a multiple bond is present

- Two electrons fewer than 8 suggests a double bond

- Four fewer than 8 suggests a triple bond or two double bonds.

Examples:

HBr	F ₂
CH4	H2O
02	CO ₂
NH3	N ₂

OBJECTIVE #9: Know the Shapes Molecular Substances (with covalent bonding)

There are four main shapes that covalent molecules can have, depending on the number and distribution of valence electrons around the central atom.

Linear	ex: HCl, F_2 , HBr, I_2 , CO ₂	Bent	ex: H_2O , SF_2
Pyramidal	ex: NH_3 , PF_3	Tetrahedral	ex: CH_4 , SiF_4 , CF_2Br_2

If the central atom is in:

Group 14		Group 15	Group 16	Group 17
X	х	x	х	x

Molecular Shape Questions:				
1. Which molecule re	presents a tetrahedral	molecule?		
a) Br ₂	b) CH4	c) CaCl ₂	d) HBr	
2. Which molecule re	presents a linear molec	ule?		
a) H ₂ O	b) CO ₂	c) NH₃	d) SH ₂	
3. Which molecule re	presents a pyramidal m	olecule?		
a) H ₂ O ₂	b) PH₃	c) CF4	d) Si ₂	
4. Which molecule represents a bent molecule?				
a) SiH₄	b) NH₃	c) SH ₂	d) HBr	

OBJECTIVE #10: Know how to Determine Molecular Polarity for Covalent Substances

The symmetry of a molecule is used to determine if the covalent molecule is polar or non-polar.

- This is different from bond polarity, where the electronegativity difference is used to determine if a covalent bond is polar or non-polar
- a) Non-Polar Molecule = molecule is ____
 - no dipoles within the molecule (or the dipoles cancel each other out)

ex) Br_2 , CH_4 , CO_2 , SiF_4 , H_2

b) Polar Molecule = molecule is _

- has dipoles within the molecule

ex) NH₃, PCl₃, H₂O, H₂S, HF

	Molecular Polarity Questions:				
1. Wh	nich molecule is nonpol	ar?			
	a) H ₂ O	b) NH₃	c) CO	d) CO ₂	
2. Wh	nich molecule represen	ts a polar molecule?			
	a) H ₂ S	b) CH4	c) CO ₂	d) N ₂	
3. The	 3. The shape and bonding in a diatomic fluorine molecule are best described as a) symmetrical and polar b) asymmetrical and polar c) symmetrical and nonpolar d) asymmetrical and nonpolar 				
 4. Which statement explains why a molecule is nonpolar? a) electrons are shared between the atoms b) electrons are transferred between atoms c) the distribution of charge in a molecule is symmetrical d) the distribution of charge in the molecule is asymmetrical 					

OBJECTIVE #11: Know how to Write and Name Covalent Compounds

- A) Covalent Compound Formulas
 Writing formulas for covalent substances is very similar to writing formulas for ionic compounds.
 - 1) The first non-metal atom in the compound is positively charged, and if a roman numeral is given, that tells you the charge of the ion.
 - 2) If a polyatomic ion from Table E is given first, determine the formula and charge from the table
 - 3) The charge of the second non-metal atom in the compound is negatively charged; look up the first negative charge on the periodic table.
 - 4) If a polyatomic ion from Table E is given second, determine the formula and charge from the table
 - 5) The total positive charge on the 1st non-metal atom must cancel total negative charge on the 2nd non-metal atom and the compound must be neutral (charge of zero)
 - a. If more than one of an atom or group of atoms is needed, a subscript follows that atom (or polyatomic ion) to indicate more than one

Carbon II oxide	Hydrogen sulfide
Sulfur VI oxide	Nitrogen V fluoride
Hydrogen carbonate	Ammonium chloride

B) Naming Covalent Compounds

- 1) For the 1st non-metal atom in the compound, the name doesn't change at all
 - a. however, a roman numeral must be used to indicate which charge is being used

I = +1	III = +3	V = +5	۲۲ = ۲۲
II = +2 IV	=+4 VI	= +6	

- 2) If a polyatomic ion is 1st in the formula, the name is whatever it is on Reference table E
- For the 2nd non-metal in the formula, the name changes to have an ide ending
 ex) oxygen = oxide nitrogen = nitride phosphorus = phosphide chlorine = chloride
- 4) If a polyatomic ion is 2nd in the formula, the name is whatever it is on Reference table E

P ₂ O ₅	C(CO ₃) ₂
SO ₂	NH4CI
SO3	H ₃ PO ₄
NH3	NH₄OH

Naming and Formula Writing Practice						
 The correct name of the compound with the formula SF₄ is a) sulfur fluoride b) sulfur II fluoride c) sulfur IV fluoride d) sulfur VI fluoride 						
2. The correct formula b) NH₄S	2. The correct formula for the compound ammonium sulfide is b) NH ₄ S b) NH ₄ SO ₄ c) (NH ₄) ₂ S d) NH ₄ SO ₃					
3. The correct name for the formula P ₄ O ₁₀ is a) phosphorus oxide b) phosphorus III oxide.c) phosphorus IV oxide.d) phosphorus V oxide						
4. The formula for sulfur VI fluoride is a) S_6F b) SF_4 c) SF d) SF_6						

OBJECTIVE #12: Identify and Describe Intermolecular Forces

Intermolecular forces are attractions			attractions	molecular substances with covalent	
bonan	'8 -	They are	tha	an chemical bonding (bonding between atoms)	
	- The type of intermolecular force		intermolecular forces a m	ces a molecular substance has determines the	
			it exists at roo	m temperature [solid (s), liquid (l) or gas (g)]	
A)	Londo -	n Dispersion These attra	Forces (Van der Waals) ctions are found between	all molecules	
	 Molecules that are 		ecules that are		
		o Thes	e substances are all in th	e phase	
reasing strength B	 The greater the 		• The greater the mass,	the more likely to be in the	
			phase		
	Exa Dipole	mples: – Dipole Att These attra	ractions ctions are found between	all molecules	
	 Molecules that are 		ecules that are		
Inci	 These substances are all in melting 		e substances are all in the melting p	e phase with oints	
	Exar	nples:			

