The Mole

Objective #1: Counting Significant Figures

When a measurement or calculation is recorded on paper, the precision of the measurement

is based on what placeholder the number is recorded to. For example, a measurement of

54.0 grams is not as precise as a measurement of 54.000 grams. To any scientist reading those two

values, there is more ______ with a

measurement rounded to the thousandths place than one rounded to the tenths place.

When recording a measurement, ______ are used to determine the numbers in a measurement that are for confidence and precision versus those that are for placeholders only. Use the following rules for determining if a number in a measurement is significant or not.

- 1) All non-zero digits are considered significant (1 2 3 4 5 6 7 8 9)
- 2) Trailing zeros (zeroes at the end of a number) are significant in a measurement with a decimal point; they are NOT significant in a measurement without a decimal point
- 3) Leading zeros (zeros at the beginning of a number) are NOT significant in a measurement with a decimal point \rightarrow they are used only as placeholders
- 4) Zeroes in-between two non-zero numbers are always significant.

	Sigr	nificant Figures		
1. Which mass measurer 1) 0.086 g	ment contains four s 2) 0.431 g	ignificant figures? 3) 1003 g	4) 3870 g	
2. The measurement 0.4	1006 grams, rounde	ed to three significant	figures, is expressed as	
1) 0.41 g	2) 0.410 g	3) 0.4100 g	4) 0.4101 g	
3. Which measurement	contains a total of th	ree significant figures	?	
1) 0.12	2) 012	3) 120	4) 120.	

4. Which measurement co	ontains 1 significant fig	gure?	4) 0 00 am		
1) 0.08 cm	2) 0.080 cm	3) 800. cm	4) 8.08 cm		
5. Which measurement co	ontains a total of three	significant figures?	42.42.050		
1) 0.012 g	2) 0.125 g	3) 1,205 g	4) 12,050 g		
6. Which volume measur	ement is expressed to	four significant figure	es?		
1) 5.50 mL	2) 550. mL	3) 5,500 mL	4) 5,500. mL		
7. Which mass measurem	ent contains a total of	two significant figure	s?		
1) 22.0 g	2) 22.00 g	3) 220. g	4) 2200 g		
8. Which measurement ha	as the greatest numbe	r of significant figures	?		
1) 6.060 mg	2) 60.6 mg	3) 606 mg	4) 60600 mg		
9. Which measurement co	ontains three significat	nt figures?			
1) 0.05 g	2) 0.050 g	3) 0.056 g	4) 0.0563 g		
10. How many significant figures are in the measurement 0.070200					
1) 2	2) 3	3) 5	4) 7		

Objective #2: Calculations and Rounding to Significant Figures

A) Multiplying and Dividing

When multiplying or dividing measurements, the final answer must have the same number of significant

figures as the measurement with the ______ significant figures.

Ex) 4.610 ÷ 5.50 =

Ex) 297.05 ÷ 3.1

B) Adding and Subtracting

When adding and subtracting measurements, the final answer must have the same precision to the right of the decimal point as the measurement with the ______ after the decimal point.

Ex) 4.271 + 2.0 + 10.57 =

Ex) 212.59 - 7 =

Ex) 0.00560 + 2.1 =

Math and Significant Figures					
1) During a laboratory experiment, a sample of aluminum is found to have a mass of 12.50 grams and a volume of 4.6 milliliters. What is the density of this sample, expressed to the correct number of significant figures?					
1) 2.717 g/mL	2) 2.72 g/mL	3) 3 g/mL	4) 2.7 g/mL		
2) A student calculates th is 8.21 cubic centimeters.	e density of an unkno How many significar	wn solid. The mass is nt figures should appe	s 10.04 grams and the volume ear in the final answer?		
1) 1	2) 2	3) 3	4) 4		
3) Expressed to the corre Which two masses produ	ct number of significa ce this answer?	nt figures, the sum of	two masses is 445.2 grams.		
1) 210.10 g + 235.	100 g	3) 210.1 g + 235.1	g		
2) 210.100 g + 235	5.10 g	4) 210.10 g + 235.2	10 g		
4) What is the product of 2.324 cm x 1.11 cm expressed to the correct number of significant figures?					
1) 2.58 cm ²	2) 2.5780 cm ²	3) 2.5796 cm ²	4) 2.57964 cm ²		
5) What is the quotient of 8.01 grams divided by 3.127 grams, expressed to the correct number of significant figures?					
1) 2.6	2) 2.56	3) 2.562	4) 2.5616		

6) Which quantity expresses the sum of the given masses (22.1 g + 375.66 g + 5400.132 g) to the correct number of significant figures?				
1) 580	lo g	2) 5798 g	3) 5797.9 g	4) 5797.892 g
7) The volum is the mass of	e of a gas sam the gas samp	ple is 22.40 liters ple, expressed to the 20 17 00 m	The density of the g he correct number of	as is 1.34 grams per liter. What significant figures?
1) 10.	/ g	2) 17.00 g	3) 30.00 g	4) 30.0 g
8) Given (52.) figures?	6 cm x 1.214 o	cm) What is the pr	roduct expressed to th	ne correct number of significant
1) 64 0	cm ²	2) 63.9 cm ²	3) 63.86 cm ²	4) 63.8564 cm ²
9) When 1.25 reaction. Wh 1) 4.45	5 grams of X at is the total 55 g	completely reacts mass of Z, express 2) 4.46 g	with 3.2 grams of Y, Z sed to the proper num 3) 4.5 g	Z is the only product of the aber of significant figures? 4) 5g
10) A solid ob	oject shown b	elow has a mass o	of 162.2 grams.	6.0 cm
What is the d 1) 0.2	ensity of the c 2 g/cm ³	bject rounded to 2) 0.2219 g/cm ³	the correct number o 3 3) 4.5 g/cm ³	f significant figures? 4) 4.505 g/cm ³
Objective #3: N Chemical formu	lathematics o llas can tell us	f Formulas many things. Ther	re is qualitative analysis	s and
quantitative and	alysis that can	come from a form	ula.	
- <u>qual</u>	i <u>tative</u> data fro	om a formula tells (us	
are i	n the formula			
- <u>quar</u>	<u>ntitative</u> data f	rom a formula tells	s us	
are i	n the formula			
exan	nple: C ₆ H ₁₂ O ₆	qualitative ar	nalysis =	
		quantitative a	analysis =	

When writing a formula, we can also determine the number of moles of each element. A mole is a

quantitative way of describing atoms in chemistry. With a formula, we use ______

(small numbers) after an element's symbol to indicate if we have more than one of an atom in an substance.

Practice:

Compound	First Element	Second Element	Third Element	Fourth Element	Total
ксі					
LiNO ₃					
Sr(NO ₃) ₂					
Fe ₃ (PO ₄) ₂					
(NH ₄) ₂ SO ₄					

Objective #4: Determining Gram Formula Mass (G.F.M.)

Describing chemical substances in terms of atoms is very difficult, since you need a large amount of

atoms to have any kind of measurable data. So instead, scientists use

(also sometimes called

molar mass) to calculate and express the quantity of a given substance in grams.

 Thanks to the work of Amedeo Avogadro, it was then determined that the gram formula mass for any substance is then equal to the mass of ______ of that substance, which then equals ______ atoms.

To calculate gram formula mass for any substance, you need to look at the _

for the elements written on the periodic table.

- Step 1: Determine the number of atoms of each element from the formula
- Step 2: Consult the periodic table for the atomic mass for each element (round to the TENTHS place), and then multiply it by the number of atoms to determine the total mass for each element
- Step 3: Add the total mass for each element to determine the "Gram Formula Mass"

Ag	02	MgO
Fe ₂ O ₃	H ₂ SO ₄	Al ₂ (CO ₃) ₃

	Formulas and Gram Formula Mass Questions						
1. Wh	1. What are the total number of sulfur atoms in $(NH_4)_2SO_4$?						
2 1471-							
2. W Na	1) 6	2) 2	3) 8	4) 4			
3. Wh	at is the total number	of atoms present in 1	l mole of Pb(C ₂ H ₃ O ₂) ₂	?			
	1) 9	2) 14	3) 3	4) 15			
4. Wh	ich sample contains a 1) 23 0 g Na	mole of atoms? 2) 24 0 σ C	3) 42 0 g Kr	4) 78 0 g K			
	tic the grow formul		0) 1210 g 11				
5. WI	1) 54 g	2) 55 g	3) 110 g	4) 206 g			
6. Wh	at is the gram formula	a mass of CH_3COOH ?	2) 49.0 a	4) (0,0 m			
	1) 22.4 g	2) 44.0 g	5) 40.0 g	4) 00.0 g			
7. Wh	at is the gram-formul 1) 248.4 g/mole	a mass of Ca ₃ (PO ₄) ₂ ? 2) 263.0 g/mole	3) 279.9 g/mole	4) 310.3 g/mole			
8. Wh	at is the gram formula	a mass of $Ca(OH)_2$?	2) 571 a	4) 74 1 g			
	1 J 2 9.0 g	2J 34.0 g	5) 57.1 g	4J / 4.1 g			

Objective #5: Mole Unit Conversions

A) Introduction to Dimensional Analysis

Dimensional analysis is a process that can be used to cancel out units when converting between different units. When using dimensional analysis, a relationship is set up between two factors in a "fraction-type" setup. Each contributing part in a dimensional analysis problem will work together in conjunction to contribute to the final answer with a new unit.

Example 1: 3.5 days = ? hours

```
Example 2: 10,360 seconds = ? hours
```

```
Example 3: 240,950 minutes = ? weeks
```

B) One Step Mole Unit Conversions

A mole is defined as 6.02×10^{23} of some chemical unit, be it atoms, molecules, ions, or others. The mole is a convenient unit to use because of the great number of atoms, molecules, or others in any substance. The mole was originally defined as the number of atoms in 12 grams of carbon-12, but in 2018 it was announced that the mole would be just 6.02×10^{23} of some chemical unit.

When converting between units of grams, liters, atoms or molecules, dimensional analysis will use the relationship of each versus 1 mole. The "mole map" on the next page shows the relationship of each to 1 mole.

Ex 1: How many liters are in 2.5 moles of $CO_2(g)$?

Ex 2: How many moles are in 2.59×10^{24} atoms of Ne(g)?

Ex 3: How many grams are in 4.200 moles of H₂CO₃(s)?

C) Mole Unit Conversions: Two Step Conversions

- first step will be to convert given unit to moles
- second step will be to convert moles to desired unit

Ex 1: How many liters are in 2.5 x 10^{23} molecules of CCl₄?

Ex 2: How many grams are in 16.0 L of Ne?

Ex 3: How many grams are in 5.03 x 10^{26} molecules of H₂?

Ex 4: How many atoms are in 79.6 grams of Argon?

Mole Conversions					
1. How many molecules are conta	ined in 126.9 grams o	f iodine, I ₂ ?			
1) 1.50×10^{23}	2) 3.01×10^{23}	3) 9.03 x 10 ²³	4) 1.24 x 10 ²⁴		
2. What is the total number of atom	ms contained in 2.00 i	moles of nickel?			
1) 6.02 x 10 ²³	2) 1.20 x 10 ²⁴	3) 58.9	4) 118.0		
3. What is the mass of 1.22×10^{23}	molecules of nitrogen	gas?			
1) 2.84 g	2) 5.67 g	3) 69.1 g	4) 140.5 g		
4. What is the volume, in liters, of	576. grams of SO_2 gas	?			
1) 101 L	2) 201 L	3) 216 L	4) 788 L		
5. What is the number of moles of CO ₂ in a 220 gram sample?					
1) 0.20 moles	2) 5.0 moles	3) 15.0 moles	4) 44.0 moles		

Objective #6: Calculating Percent Composition

Formula on Reference Table T:

1) What is the percentage composition by mass of oxygen in KClO₃?

2) What is the percent composition by mass for each element in the compound NO_2 ?

3) What is the percent composition by mass for each element in rubbing alcohol, C₃H₇OH?

Percent Composition					
1. What is the percent	by mass of oxygen in	$Fe_2O_3?$			
1) 16%	2) 30.%	3) 56%	4) 70.%		
2. What is the percent by mass of carbon in CO ₂ ?					
1) 12%	2) 27%	3) 44%	4) 73%		
3. The percent by mass of nitrogen in NH4NO3 is closest to					
1) 15%	2) 20%	3) 35%	4) 60%		
4. What is the percent composition by mass of oxygen in $Ca(NO_3)_2$?					
1) 75%	2) 59%	3) 48%	4) 29%		
5. Which compound has the greatest percent composition by mass of sulfur?					
1) BaS	2) MgS	3) CaS	4) SrS		

Objective #7: Identifying and Calculations for Hydrates					
Hydrates are		(+		_) compounds that	
have	m	olecules trapped with	in the crystalline structur	е	
* The water isto the structure					
Since the water is NOT bonded to the structure, the hydrate can be					
	gentl	y heated and the wate	er will then		
	from	the crystal			
		- What is left behind	d is called		
		(an ionic compou	and without the water tra	pped anymore)	
	heat Hydrate> anhydrous ionic compound + v (ionic compound + water)				
Identify hydrate	s: (for hydrates, the	e "●" means "and")			
	HYDRATE	Ionic Compound and	Water Molecule	s	
	CuSO ₄ • 5 H ₂ O	CuSO ₄	5 H ₂ O		
	LiNO ₃ • 2 H ₂ O	LiNO ₃	2 H ₂ O		
	MgSO ₄ • 8 H ₂ O	MgSO ₄	8 H ₂ O		

The number in front of H₂O is known as a ______. This is a whole-number ______. This is a follows it for total gram formula mass

 $4 H_2O$

A) Finding the Gram Formula Mass of a hydrate

 $MnCl_2 \bullet 4 H_2O$

 $LiNO_3 \bullet 2 H_2O \qquad \qquad MgSO_4 \bullet 8 H_2O$

MnCl₂

- B) Determining the percentage of water in a hydrate
 - 1) Theoretically using the formula
 - a. Use the gram formula mass of the hydrate versus of just the water in the hydrate to determine the percent composition of water in a hydrate

Example: MgSO₄ • 8 H₂O

- 2) Experimentally
 - a. Use data given from experiment to determine amount of water in a hydrate

heat Hydrate (H₂O included) -----> Anhydrous (no H₂O)

Example 1: Mass of Hydrate = 5.00 grams Mass of anhydrous after heating = 4.26 grams

Example 2: Mass of Hydrate + crucible = 23.00 grams Mass of anhydrous + crucible after heating = 16.80 grams Mass of just crucible = 5.00 grams

Hydrates					
1. What is the grar	n formula mass of CuSO4 • 5 H2O	?			
1) 160. g	2) 178 g 3) 186 g	4) 250. g		
2. The percent by	mass of water in the hydrate Na ₂	SO ₄ •10 H ₂ O is clos	est to		
1) 18%	2) 44% 3) 56%	4) 76%		
3. A 10.0 gram san mass of anhydrous hydrate?	nple of a hydrate was heated unt s product remaining was 8.00 gra	il all the water of h ams. What is the p	ydration was driven off. The ercent of water in the		
1) 12.5%	2) 20.0% 3) 25.0%	4) 80.0%		
4. A hydrate is a co experiment to find recorded:	4. A hydrate is a compound with water molecules incorporated into its crystal structure. In an experiment to find the percent by mass of water in a hydrated compound, the following data were recorded:				
	Mass of crucible + hydrated crystals before heating	7.50 grams			
	Mass of crucible	6.90 grams			
	Mass of crucible + anhydrous crystals after heating	7.20 grams			
What is the percent by mass of water in the hydrate?					
1) 8.0 %	2) 50. % 3) 72. %	4) 96. %		

Objective #8: Calculating Empirical and Molecular Formulas

There are two types of chemical formulas – empirical and molecular formulas.

Ex)

- A molecular formula is a formula in which the subscripts have _____

_____. They show the actual number of atoms in a formula

Ex)

Examples:

Formula	Empirical or	Reduce if Molecular	
	Molecular?	Divide by	Empirical
H ₂ O ₂			
N ₂ O ₃			
C ₆ H ₁₂ O ₆			

Formula	Empirical or	Reduce if Molecular	
	Molecular?	Divide by	Empirical
LiCl			
Mg(NO ₃) ₂			
Mg ₃ (PO ₄) ₂			

A) Determining an Empirical formula

Step 1: Convert given all given masses (grams) to moles

- Step 2: Divide all molar answers from step 1 by the smallest of the mole answers
 - You should get a whole numbers when dividing
- Step 3: Use these whole numbers as subscripts in formula

Ex) A compound has 6.13 grams of Cu and 1.55 grams of S. What is the empirical formula?

Ex) A compound is made up of 30.5% N and 69.5% O. What is the empirical formula? *HINT: Change out % symbol for grams

B) Determining a Molecular formula

- Step 1: Find the GFM of the empirical formula given
- Step 2: Divide the molecular formula mass (given in the problem) by the empirical formula mass
 - This will give you a whole number known as a "multiplier"
- Step 3: Multiply the subscripts in the formula by the multiplier found in step 2.

Ex) A compound has the empirical formula of CH_2O . The molecular formula mass is 60.0 g/mole. What is the molecular formula?

Ex) Caffeine has the empirical formula of $C_4H_5N_2O$. The molecular formula mass is 291.0 g/mole. What is the molecular formula?

	(
	Empirical and Molecular Formulas						
	1. What is the empirical formula of a compound consisting of 29.6% oxygen and 70.4% fluorine mass?						
	1) OF	2) OF ₂	3) O ₂ F	4) O ₂ F ₄			
	2. What is the empirical formula of a compound if a sample contains 8.52 grams of carbon and 1.42 grams of hydrogen?						
	1) C ₂ H	2) CH ₂	3) CH	4) C ₂ H ₂			
	3. A substance has an empirical formula of CH_2 and a molar mass of 56 grams per mole. The molecular formula for this compound is						
	1) CH ₂	2) C_4H_6	3) C ₄ H ₈	4) C ₈ H ₄			
	4. A compound has an empirical formula of HCO_2 and a molecular mass of 90. grams per mole.						
	1) HCO	$2) H_2C_2O_4$	3) H ₄ C ₄ O ₈	4) H ₆ C ₆ O ₁₂			
П							
	What is the longest chemical compound?						
"($C_{18}H_{24}N_2O_6$), a miticide and contact							
	fungicide used to control powdery mildew in crops. The IUPAC name for Titin . This is the						
largest known protein and so has the longest chemical name. Written in full, it contains				ongest ins			
	189,819 letters."						