Exploring Chemical Equations and Reactions

Objective \#1: Know the parts of a Chemical Equation

Below is a balanced chemical equation of a chemical reaction between sodium (Na) and iodine (I).

$\underline{2} \mathrm{Na}+\underline{1} \mathrm{I}_{2} \quad \rightarrow \quad \underline{2} \mathrm{NaI}$

Reactants: substances present \qquad a chemical reaction occurs

Products: substances present \qquad a chemical reaction has occurred

* From reactants to products, the chemical reaction allows bonds to breaks apart, rearrange atoms, and forms new bonds to produce "new" substances with different properties.

Coefficient: whole number \qquad that get distributed to each atom in a chemical formula

- Coefficients are \qquad units

Subscript: a whole number that follows an atom to indicate atoms that are \qquad together in a chemical formula

Objective \#2: Balancing Equations

In a balanced chemical reaction, the \qquad and \qquad of atoms that are present at the beginning of a reaction must be equal to the number and type of atoms present at the end.
To balance an equation...

1) Determine what elements are present in the reaction on BOTH the reactant and product side.
2) Count the starting number of atoms for each element on $B O T H$ sides of the equation
3) Use coefficients (whole number multipliers) in front of chemical symbols or formulas to balance the numbers between the reactants and the products
4) The reaction is balanced when the type and number of atoms is the same on BOTH sides * * Disclaimer: Balancing chemical equations simply takes time and practice to master!!**

Sum of Coefficients
Ex. \#1 \qquad $\mathrm{H}_{2}+$ \qquad $\mathrm{O}_{2} \rightarrow$ \qquad $\mathrm{H}_{2} \mathrm{O}$

Ex. \#2

$$
\ldots \mathrm{Zn}+\ldots
$$ $\mathrm{HCl} \rightarrow \ldots \mathrm{ZnCl}_{2}+$ \qquad H_{2}

Ex \#3 \qquad $\mathrm{KClO}_{3} \rightarrow+\quad \mathrm{KCl}+$ \qquad O_{2}

Ex \#4

$$
\ldots \mathrm{CoBr}_{3}+\ldots \mathrm{CaSO}_{4} \rightarrow \ldots \mathrm{CaBr}_{2}+\ldots \mathrm{CO}_{2}\left(\mathrm{SO}_{4}\right)_{3}
$$

Ex \#5 \qquad $\mathrm{P}_{2} \mathrm{O}_{5}+$ \qquad $\mathrm{H}_{2} \mathrm{O} \rightarrow$ \qquad $\mathrm{H}_{3} \mathrm{PO}_{4}$

Balancing Chemical Equations

1. If an equation is balanced properly, both sides of the equation must have the same number of
1) atoms
2) coefficients
3) molecules
4) moles of molecules
2. Given the unbalanced equation: $\quad \mathrm{Al}+\ldots \mathrm{CuSO}_{4} \rightarrow \mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}+\ldots \mathrm{Cu}$ When the equation is balanced using the smallest whole-number coefficients, what is the coefficient of AI?
1) 1
2) 2
3) 3
4) 4
3. Given the unbalanced equation: __ $\mathrm{Mg}\left(\mathrm{ClO}_{3}\right)_{2}(\mathrm{~s}) \rightarrow \ldots \mathrm{MgCl}_{2}(\mathrm{~s})+\ldots \mathrm{O}_{2}(\mathrm{~g})$ What is the coefficient of O_{2} when the equation is balanced correctly using the smallest whole number coefficients?
1) 1
2) 2
3) 3
4) 4
4. Given the unbalanced equation: __CaSO ${ }_{4}+\ldots \mathrm{AlCl}_{3} \rightarrow \ldots \mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}+\ldots \mathrm{CaCl}_{2}$ What is the coefficient of $\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}$ when the equation is completely balanced using the smallest whole-number coefficients?
1) 1
2) 2
3) 3
4) 4
5. Given the unbalanced equation:__ $\mathrm{Fe}_{2} \mathrm{O}_{3}+\ldots \mathrm{CO} \rightarrow$ _ $\mathrm{Fe}+\ldots \mathrm{CO}_{2}$ When the equation is correctly balanced using the smallest whole-number coefficients, what is the coefficient of CO?
1) 1
2) 2
3) 3
4) 4
6. Given the incomplete equation: $4 \mathrm{Fe}+3 \mathrm{O}_{2} \rightarrow 2 \mathrm{X}$ Which compound is represented by X ?
1) FeO
2) $\mathrm{Fe}_{2} \mathrm{O}_{3}$
3) $\mathrm{Fe}_{3} \mathrm{O}_{2}$
4) $\mathrm{Fe}_{3} \mathrm{O}_{4}$
7. Given the incomplete equation: $2 \mathrm{~N}_{2} \mathrm{O}_{5}(\mathrm{~g}) \rightarrow$? Which set of products completes and balances the incomplete equation?
1) $2 \mathrm{~N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g})$
2) $2 \mathrm{~N}_{2}(\mathrm{~g})+2 \mathrm{O}_{2}(\mathrm{~g})$
3) $4 \mathrm{NO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})$
4) $4 \mathrm{NO}(\mathrm{g})+\mathrm{SO}_{2}(\mathrm{~g})$

Objective \#3: Classifying Reactions

Five basic chemical reactions exist in chemistry. Given a reaction, you will need to be able to classify the type of reaction, and later on predict the products (or reactants) when given.

1) Decomposition (D)

There is only \qquad reactant, and it breaks down to form two or more single elements

- General formula: \qquad
- Example:

2) Synthesis (S) (this reaction is also sometimes known as a \qquad reaction)

Two or more single elements combine and react to form only \qquad product

- General formula: \qquad
- Example:

3) Combustion (C)

The reactants are ALWAYS contain a \qquad compound that reacts with \qquad ,
and the products are ALWAYS \qquad and \qquad

- General Formula: \qquad
- Example:

4) Single Replacement (SR)

A reaction in which an \qquad replaces another element in a -.

- General Formula:
- Example:

5) Double Replacement (DR) A reaction in which two \qquad switch ions and form two new compound products.

- General Formula: \qquad
- Example:

Classify the following reactions as S, D, C, SR or DR

Reaction	Type	Reaction	Type
$\mathrm{H}_{2}+\mathrm{Br}_{2} \rightarrow 2 \mathrm{HBr}$		$\mathrm{Cl}_{2}+2 \mathrm{KI} \rightarrow 2 \mathrm{KCl}+\mathrm{I}_{2}$	
$2 \mathrm{LiNO}_{3}+\mathrm{Ca} \rightarrow \mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}+2 \mathrm{Li}$		$\mathrm{Li}_{2} \mathrm{~S}+\mathrm{Fe}\left(\mathrm{NO}_{3}\right)_{2} \rightarrow 2 \mathrm{LiNO}_{3}+\mathrm{FeS}$	
$2 \mathrm{Fe}+3 \mathrm{Cl}_{2} \rightarrow 2 \mathrm{FeCl}_{3}$		$2 \mathrm{NO} \rightarrow \mathrm{N}_{2}+\mathrm{O}_{2}$	
$2 \mathrm{Li}_{2} \mathrm{O} \rightarrow 4 \mathrm{Li}+\mathrm{O}_{2}$	$\mathrm{C}_{2} \mathrm{H}_{4}+3 \mathrm{O}_{2} \rightarrow 2 \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O}$		

Classifying Reactions

1. Given the balanced equations representing two chemical reactions:

$$
\begin{aligned}
& \mathrm{Cl}_{2}+2 \mathrm{NaBr} \rightarrow 2 \mathrm{NaCl}+\mathrm{Br}_{2} \\
& 2 \mathrm{NaCl} \rightarrow 2 \mathrm{Na}+\mathrm{Cl}_{2}
\end{aligned}
$$

Which type of chemical reactions are represented by these equations?

1) single replacement and decomposition
2) synthesis and decomposition
3) single replacement and double replacement
4) synthesis and double replacement
2. Which balanced equation represents a single-replacement reaction?
1) $\mathrm{Mg}+2 \mathrm{AgNO}_{3} \rightarrow \mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2}+2 \mathrm{Ag}$
2) $2 \mathrm{Mg}+\mathrm{O}_{2} \rightarrow 2 \mathrm{MgO}$
3) $\mathrm{MgCO}_{3} \rightarrow \mathrm{MgO}+\mathrm{CO}_{2}$
4) $\mathrm{MgCl}_{2}+2 \mathrm{AgNO}_{3} \rightarrow 2 \mathrm{AgCl}+\mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2}$
3. Given the balanced equation representing a reaction: $4 \mathrm{Al}(\mathrm{s})+3 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{Al}_{2} \mathrm{O}_{3}(\mathrm{~s})$ Which type of chemical reaction is represented by this equation?
1) double replacement
2) single replacement
3) combustion
4) synthesis
4. Given the balanced equation: $\mathrm{AgNO}_{3}(\mathrm{aq})+\mathrm{NaCl}(\mathrm{aq}) \rightarrow \mathrm{NaNO}_{3}(\mathrm{aq})+\mathrm{AgCl}(\mathrm{s})$ This reaction is classified as
1) synthesis
2) decomposition
3) single replacement
3) double replacement
5. What type of reaction is shown to the right? $\mathrm{F}_{2}(\mathrm{~g})+\mathrm{CaBr}_{2}(\mathrm{~g}) \rightarrow \mathrm{CaF}_{2}(\mathrm{~g})+\mathrm{Br}_{2}(\mathrm{~g})$
1) synthesis
2) decomposition
3) single replacement
4) double replacement

Objective \#4: Determining the missing substance(s) in a reaction

a) Decomposition Reaction

In some decomposition reactions, one reactant breaks down into its corresponding elements that made up the compound in the first place. When determining the parts of a decomposition reaction, be sure to remember that there are seven elements that are diatomic when they are alone (un-bonded) in nature.)
\qquad

Example 2: \qquad $\rightarrow \ldots \quad \mathrm{S}$ $\mathrm{r}+\ldots \mathrm{O}_{2}$

Example 3: \qquad $\mathrm{Pb}_{3} \mathrm{P}_{2} \rightarrow$ \qquad $+$ \qquad
b) Synthesis Reaction

In some synthesis reactions, two or more solitary elements combine to make one product. When determining the parts of a synthesis reaction, be sure to remember that there are seven elements that are diatomic when they are alone (un-bonded) in nature.)

Example 1: \qquad $\mathrm{Na}+$ \qquad $\mathrm{Cl}_{2} \rightarrow$ \qquad

Example 2: \qquad $+$ \qquad
\qquad $\mathrm{Fe}_{2} \mathrm{O}_{3}$

Example 3: \qquad $+$ \qquad $\rightarrow \quad \mathrm{SO}_{2}$

Decomposition and Synthesis Reactions

1. What are the products for the following decomposition reaction? $2 \mathrm{Al}_{2} \mathrm{O}_{3} \rightarrow$?
1) $4 \mathrm{Al}+\mathrm{O}_{3}$
2) $2 \mathrm{Al}_{2}+\mathrm{O}_{3}$
3) $4 \mathrm{Al}+3 \mathrm{O}_{2}$
4) $4 \mathrm{Al}+6 \mathrm{O}$
2. What are the reactants for the following synthesis reaction? ? $\rightarrow 2 \mathrm{ArF}_{3}$
1) $2 \mathrm{Ar}+\mathrm{F}_{3}$
2) $2 \mathrm{Ar}+2 \mathrm{~F}_{3}$
3) $2 \mathrm{Ar}+3 \mathrm{~F}_{2}$
4) $2 A r+6 F$
3. Given the incomplete equation: $4 \mathrm{Fe}+3 \mathrm{O}_{2} \rightarrow 2 \mathrm{X}$ Which compound is represented by X ?
1) FeO
2) $\mathrm{Fe}_{2} \mathrm{O}_{3}$
3) $\mathrm{Fe}_{3} \mathrm{O}_{2}$
4) $\mathrm{Fe}_{3} \mathrm{O}_{4}$
c) Single Replacement Reactions:

A reaction can occur if the element to be replaced is the same charge as the element trying to replace it
ex. A positive ion can only replace another positive ion in a compound A negative ion can only replace another negative ion in a compound AND/OR

- The element being replaced is less reactive than the element trying to replace it
- Use Table J: Activity Series
- If the single element reactant is higher on Table J than the element it is trying to replace, a reaction WILL occur
- If the single element reactant is lower on Table J than the element it is trying to replace, a reaction WILL NOT occur

Single Replacement Reactions

1. Based on Reference Table J, which of the following elements will replace Pb from $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq})$?
1) Mg
2) Au
3) Cu
4) Ag
2. According to Reference Table J, which pair will react in a single replacement reaction?
1) $\mathrm{Cu}+\mathrm{H}_{2} \mathrm{O}$
2) $\mathrm{Ca}+\mathrm{H}_{2} \mathrm{O}$
3) $\mathrm{Au}+\mathrm{H}_{2} \mathrm{O}$
4) $\mathrm{Ag}+\mathrm{H}_{2} \mathrm{O}$
3. Referring to Reference Table J, which single replacement reaction will not occur under standard conditions?
1) $\mathrm{Sn}(\mathrm{s})+2 \mathrm{HCl}(\mathrm{aq}) \rightarrow \mathrm{SnCl}_{2}(\mathrm{ag})+\mathrm{H}_{2}(\mathrm{~g})$
2) $\mathrm{Cu}(\mathrm{s})+2 \mathrm{HCl}(\mathrm{aq}) \rightarrow \mathrm{CuCl}_{2}(\mathrm{aq})+\mathrm{H}_{2}(\mathrm{~g})$
3) $\mathrm{Ba}(\mathrm{s})+2 \mathrm{HCl}(\mathrm{aq}) \rightarrow \mathrm{BaCl}_{2}(\mathrm{aq})+\mathrm{H}_{2}(\mathrm{~g})$
4) $\mathrm{Mg}(\mathrm{s})+2 \mathrm{HCl}(\mathrm{aq}) \rightarrow \mathrm{MgCl}_{2}(\mathrm{aq})+\mathrm{H}_{2}(\mathrm{~g})$

Examples:

1) \qquad Al + \qquad $\mathrm{HCl} \rightarrow$ \qquad $+$ \qquad
2) \qquad $\mathrm{MgCl}_{2} \rightarrow$ \qquad $+$ \qquad
3) $\ldots _C r+$ \qquad $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{4} \rightarrow$ \qquad $+$ \qquad
4) \qquad $\mathrm{Cl}_{2}+$ \qquad $\mathrm{NaI} \rightarrow$ \qquad $+$ \qquad
5) \qquad $I_{2}+$ \qquad HF \rightarrow \qquad $+$ \qquad
d) Double Replacement Reactions

Rules to complete a double replacement reaction:
a) Look up the charges of the elements in the compounds on the reactant sides
b) lons will switch partners and form a bond with the other oppositely charged ion available
c) Use new subscripts if necessary to insure that each new formula has a net charge of zero
d) Determine the phases of the elements using Reference Table F.

Table F
Solubility Guidelines for Aqueous Solutions

Examples:

1) \qquad $\mathrm{NaBr}(\mathrm{aq})+\ldots \mathrm{AgNO}_{3}(\mathrm{aq}) \rightarrow$ \qquad () + \qquad ()
2) \qquad $\mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq})+\underset{\sim}{\mathrm{Na}_{2} \mathrm{SO}_{4}(\mathrm{aq})} \rightarrow$ \qquad () + \qquad ()
3) \qquad $\mathrm{AgNO}_{3}(\mathrm{aq})+$ \qquad $\mathrm{Na}_{2} \mathrm{CrO}_{4}(\mathrm{aq}) \rightarrow$ \qquad () + \qquad ()
4) $\quad ـ_{2} \mathrm{~K}_{2} \mathrm{CO}_{3}(\mathrm{aq})+\ldots \mathrm{CaSO}_{4}(\mathrm{aq}) \rightarrow$ \qquad () + \qquad ()
5) $\ldots \mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq})+$ \qquad $\mathrm{LiOH}(\mathrm{aq}) \rightarrow$ \qquad () + \qquad ()

Objective \#5: Writing Net Ionic Equations

A net ionic equation shows only those particles involved in the formation of a solid (s) in a double replacement reaction and is balanced with respect to mass and charge. You can predict the formation of a precipitate (solid) by using the general rules for solubility of ionic compounds with respect to Reference Table F.

Example 1:

Write the net ionic equation for the following reaction: $\mathrm{Sr}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq})+\mathrm{K}_{2} \mathrm{SO}_{4}(\mathrm{aq}) \rightarrow$
a) Finish and balance the double replacement reaction:

b) Write out the "Total Ionic Equation"; cross out spectator ions - those ions that are the same on the reactant and product sides:

c) Net lonic Equation - what's left over:

d) Spectator lons - what was crossed out above:

Example 2:

Write the net ionic equation for the following reaction: $\mathrm{KI}(\mathrm{aq})+\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq}) \rightarrow$
a) Finish and balance the double replacement reaction:
\qquad \rightarrow \qquad $+$ \qquad
b) Write out the "Total Ionic Equation"; cross out spectator ions - those ions that are the same on the reactant and product sides:
c) Net lonic Equation - what's left over: \quad d) Spectator lons - what was crossed out above:
\qquad
\qquad

Stoichiometry

Stoichiometry is the study of amounts in chemical reactions. When doing stoichiometry problems, you must always begin with a \qquad . You will then use the whole number \qquad as molar quantities for each compound, which will help to determine how much of each reactant is needed to produce the given products.

Objective \#1: Determining Mole Ratios from balanced equations

From a balanced equation, you can create mole ratios between two substances.
a) $2 \mathrm{H}_{2}+1 \mathrm{O}_{2} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}$
b) $1 \mathrm{Zn}+2 \mathrm{HCl} \rightarrow 1 \mathrm{H}_{2}+1 \mathrm{ZnCl}_{2}$
Mole ratios:

These mole ratios show the relationship between molar quantities of one compound to molar quantities of another compound

Objective \#2: Using the Stoichiometry Mole Map

Shows the relationship when converting between molar units AND between moles of one substance to moles of another substance.

1) $\mathbf{1}$ step stoichiometry calculations (mole - mole calculations)

This is the simplest type of stoichiometry calculation. These are mole-mole calculations, in which you are trying to determine how many moles of one substance there are related to another substance. (Use a one-step dimensional analysis setup to solve.) Using the mole ratio of the two substances being asked about, you will create a setup as below to solve these problems.

Example 1:

Given the following balanced equation: $1 \mathrm{Zn}+2 \mathrm{HCl} \rightarrow 1 \mathrm{H}_{2}+1 \mathrm{ZnCl}_{2}$
How many moles of H_{2} would be produced if there was 7.3 moles of HCl ?

Example 2:

Given the following balanced equation: $\mathrm{N}_{2}+3 \mathrm{H}_{2} \rightarrow 2 \mathrm{NH}_{3}$ How many moles of H_{2} are needed to produce 0.8 moles of NH_{3} ?

2) $\mathbf{2}$ - step stoichiometry calculations

In a two-step calculation, you will be comparing moles of one substance to grams, liters or molecules of another substance in a balanced chemical equation. One step will be to convert the grams (or liters or atoms/molecule) to moles, and the other step will be to compare moles of one substance to moles of another substance using the mole ratios. This will require a two-step dimensional analysis setup.

Example 1:

Given the following balanced equation: $1 \mathrm{Zn}+2 \mathrm{HCl} \rightarrow 1 \mathrm{H}_{2}+1 \mathrm{ZnCl}_{2}$
How many moles of H_{2} would be produced if there was 25.0 grams of Zn used?

Example 2:

Given the following balanced equation: $\mathrm{N}_{2}+3 \mathrm{H}_{2} \rightarrow 2 \mathrm{NH}_{3}$ How many liters of NH_{3} would be produced if there was 5.5 moles of N_{2} ?

Example 3:

Given the following balanced equation: $2 \mathrm{KClO}_{3} \rightarrow 2 \mathrm{KCl}+3 \mathrm{O}_{2}$ How many moles of KClO_{3} would be needed to produce 2.60×10^{23} molecules of O_{2} ?

3) 3 - step stoichiometry calculations

In a three-step calculation, you will be comparing grams/atoms/molecules/liters of one substance to grams, liters, atoms or molecules of another substance in a balanced chemical equation. You will follow the mole map road and use a three-step dimensional analysis setup.

Example 1:

Given the following balanced equation: $1 \mathrm{Zn}+2 \mathrm{HCl} \rightarrow 1 \mathrm{H}_{2}+1 \mathrm{ZnCl}_{2}$ How many grams of ZnCl_{2} would be produced if there was 37.0 grams of Zn used?

Example 2:

Given the following balanced equation: $1 \mathrm{~N}_{2}+3 \mathrm{H}_{2} \rightarrow 2 \mathrm{NH}_{3}$ How many molecules of N_{2} would be needed to produce 125.0 L of NH_{3} ?

Example 3:

Given the following balanced equation: $2 \mathrm{KClO}_{3} \rightarrow 2 \mathrm{KCl}+3 \mathrm{O}_{2}$
How many liters of O_{2} would be produced if the reaction began with 20.0 grams of KClO_{3} ?

Objective \#3: Determining Limiting Reactants

The limiting reactant in a chemical reaction is the substance that is consumed when the chemical reaction is complete. The amount of product formed is limited by this reactant, since the reaction cannot continue without it. If one or more other reactants are present in excess of the quantities required to react with the limiting reactant, they are described as
\qquad reactants.
The limiting reactant must be identified in order to calculate the percentage yield of a reaction, since the \qquad yield is defined as the amount of product obtained when the limiting reactant reacts completely. Given the balanced chemical equation, which describes the reaction, there are several equivalent ways to identify the limiting reactant and evaluate the excess quantities of other reactants.

Example \#1: Limiting Reactant Calculation
A 2.00 g sample of ammonia is mixed with 4.00 g of oxygen. How many grams of $\mathrm{H}_{2} \mathrm{O}$ will be produced? Which reactant is the limiting reactant?

$$
4 \mathrm{NH}_{3(\mathrm{~g})}+5 \mathrm{O}_{2(\mathrm{~g})} \rightarrow 4 \mathrm{NO}_{(\mathrm{g})}+6 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}
$$

Example 2: Limiting Reactant Calculation
90.0 g of FeCl_{3} reacts with 52.0 g of $\mathrm{H}_{2} \mathrm{~S}$. How many liters of HCl will be produced? Which reactant is the limiting reactant?

$$
2 \mathrm{FeCl}_{3(\mathrm{~s})}+3 \mathrm{H}_{2} \mathrm{~S}_{\mathrm{g})} \rightarrow \mathrm{Fe}_{2} \mathrm{~S}_{3(\mathrm{~s})}+6 \mathrm{HCl}_{(\mathrm{g})}
$$

Objective \#4: Percent Yield

The theoretical yield is the maximum amount of product you would expect from a reaction based on the amount of limiting reagent. In practice, however, chemists don't always obtain the maximum yield for many reasons. Since chemists know that the actual yield might be less than the theoretical yield, we report the actual yield using percent yield, which tells us what percentage of the theoretical yield we obtained. The percent yield is determined using the following equation:

$$
\text { Percent Yield }=\frac{\text { Actual yield }}{\text { Theoretical yield }} \times 100
$$

Example \#1: A 2.00 g sample of ammonia is mixed with 4.00 g of oxygen for the following reaction: $4 \mathrm{NH}_{3(\mathrm{~g})}+5 \mathrm{O}_{2(\mathrm{~g})} \rightarrow 4 \mathrm{NO}_{(\mathrm{g})}+6 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}$
At the completion of the reaction, 2.35 grams of $\mathrm{H}_{2} \mathrm{O}$ were produced. What is your percent yield?

Example \#2: 90.0 g of FeCl_{3} reacts with 52.0 g of $\mathrm{H}_{2} \mathrm{~S}$ for the following reaction:

$$
2 \mathrm{FeCl}_{3(\mathrm{~s})}+3 \mathrm{H}_{2} \mathrm{~S}_{(\mathrm{g})} \rightarrow \mathrm{Fe}_{2} \mathrm{~S}_{3(\mathrm{~s})}+6 \mathrm{HCl}_{(\mathrm{g})}
$$

At the completion of the reaction, 29.5 L of HCl were produced. What is your percent yield?

