Redox Chemistry

Objective \# 1: Defining Oxidation and Reduction

A Redox Reaction is a type of reaction in which there is a \qquad of electrons between species to generate an \qquad . Redox reactions have two parts (half reactions): Oxidation and Reduction.
a) Oxidation: the \qquad of electrons by a species in a chemical reaction

- the element becomes more positively charged

b) Reduction: the \qquad of electrons by a species in a chemical reaction
- the element becomes more negatively charged

Objective \#2: Determining Oxidation Numbers

Oxidation numbers (aka \qquad) are a number assigned to keep track of electron loss or gain in redox reactions

Rules to know:

1) A lone element (including diatomic) has an oxidation number of \qquad because it has not yet lost or gained any electrons ($\# \mathrm{e}^{-}=\# \mathrm{p}^{+}$)
2) When there are more than two elements in a compound, you must choose the oxidation number(s) in such that the overall charge of the compound equals \qquad .
3) If an element has more than one "selected oxidation numbers" listed, use the other element oxidation numbers to figure out which oxidation number to use.

Species	Oxidation Numbers		
Li	$\mathrm{Li}=$		
Br_{2}	$\mathrm{Br}=$	$\mathrm{O}=$	
BaO	$\mathrm{Ba}=$	$\mathrm{Cl}=$	
NiCl_{2}	$\mathrm{Ni}=$	$\mathrm{O}=$	
$\mathrm{Mn}_{2} \mathrm{O}_{7}$	$\mathrm{Mn}=$	$\mathrm{S}=$	$\mathrm{O}=$
CuSO_{4}	$\mathrm{Cu}=$	$\mathrm{C}=$	$\mathrm{O}=$
$\mathrm{H}_{2} \mathrm{CO}_{3}$	$\mathrm{H}=$	$\mathrm{P}=$	$\mathrm{O}=$
$\mathrm{Ca}\left(\mathrm{PO}_{4}\right)_{2}$	$\mathrm{Ca}=$	$\mathrm{N}=$	$\mathrm{O}=$
$\mathrm{Fe}\left(\mathrm{NO}_{3}\right)_{2}$	$\mathrm{Fe}=$		

Determining Oxidation Numbers

1. What is the oxidation state of nitrogen in the compound $\mathrm{NH}_{4} \mathrm{Br}$?
1) -1
2) +2
3) -3
4) +5
2. What is the oxidation number of sulfur in $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$?
1) -1
2) +2
3) +6
4) +4
3. What is the oxidation number of manganese in KMnO_{4} ?
1) +7
2) +2
3) +3
4) +4
4. What is the oxidation number of chromium in $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$?
1) +12
2) +2
3) +3
4) +6
5. In which substance is the oxidation number of Cl equal to +1 ?
1) Cl_{2}
2) $\mathrm{Cl}_{2} \mathrm{O}$
3) AlCl_{3}
4) HClO_{2}

Objective \#3: Writing Balanced Half Reactions

A half reaction is an equation to show either the loss or gain of electrons by a species in a chemical reaction

- The loss of electrons must occur before the gain of electrons can occur. This means the oxidation half reaction will be written before the reduction half reaction.

Oxidation and Reduction Half Reactions (LEO the lion says GER)

A. Oxidation: Loss of Electrons

- electrons are placed on the side to indicate "loss" $\rightarrow \mathbf{e}-$
B. Reduction: Gain of Electrons
- electrons are placed on the
side to indicate "gain" \mathbf{e} -
C. Balanced Redox Reactions

The number of electrons lost \qquad the number of electrons gained *** Law of Conservation of Charge*** : the total overall charge on the reactant side must equal the total overall charge on the product side

Example 1: $\quad \mathrm{Co}(\mathrm{s})+\mathrm{PbCl}_{2}(\mathrm{aq}) \rightarrow \mathrm{Pb}(\mathrm{s})+\mathrm{CoCl}_{2}(\mathrm{aq})$

Oxidation:

Reduction:

Balanced Redox Reaction:

Example 2:
$\mathrm{Al}(\mathrm{s})+\mathrm{Cu}^{+2}(\mathrm{aq}) \rightarrow \mathrm{Cu}(\mathrm{s})+\mathrm{Al}^{+3}(\mathrm{aq})$

Oxidation:

Reduction:

Balanced Redox Reaction:

Example 3:
$2 \mathrm{Na}(\mathrm{s})+\mathrm{FeO}(\mathrm{aq}) \rightarrow \mathrm{Fe}(\mathrm{s})+\mathrm{Na}_{2} \mathrm{O}(\mathrm{aq})$

Oxidation:

Reduction:

Balanced Redox Reaction:

Writing Half Reactions

1. Given the reaction: $\mathrm{Zn}(\mathrm{s})+\mathrm{Cu}^{2+}(\mathrm{aq}) \rightarrow \mathrm{Zn}^{2+}(\mathrm{aq})+\mathrm{Cu}(\mathrm{s}) \quad$ Which half-cell reaction represents the reduction that occurs?
1) $\mathrm{Zn}(\mathrm{s}) \rightarrow \mathrm{Zn}^{2+}(\mathrm{aq})+2 \mathrm{e}-$
2) $\mathrm{Zn}^{2+}(\mathrm{aq})+2 \mathrm{e}-\rightarrow \mathrm{Zn}(\mathrm{s})$
3) $\mathrm{Cu}^{2+}(\mathrm{aq})+2 \mathrm{e}-\rightarrow \mathrm{Cu}(\mathrm{s})$
4) $\mathrm{Cu}(\mathrm{s}) \rightarrow \mathrm{Cu}^{2+}(\mathrm{aq})+2 \mathrm{e}-$
2. Given the reaction: $\mathrm{Ca}(\mathrm{s})+\mathrm{Cu}^{2+}(\mathrm{aq}) \rightarrow \mathrm{Ca}^{2+}(\mathrm{aq})+\mathrm{Cu}(\mathrm{s}) \quad$ What is the correct reduction halfreaction?
1) $\mathrm{Cu}^{2+}(\mathrm{aq})+2 \mathrm{e}-\rightarrow \mathrm{Cu}(\mathrm{s})$
2) $\mathrm{Cu}^{2+}(\mathrm{aq}) \rightarrow \mathrm{Cu}(\mathrm{s})+2 \mathrm{e}-$
3) $\mathrm{Cu}(\mathrm{s})+2 \mathrm{e}-\rightarrow \mathrm{Cu}^{2+}(\mathrm{aq})$
4) $\mathrm{Cu}(\mathrm{s}) \rightarrow \mathrm{Cu}^{2+}(\mathrm{aq})+2 \mathrm{e}-$
3. In the reaction $\mathrm{Mg}+\mathrm{Cl}_{2} \rightarrow \mathrm{MgCl}_{2}$, the correct half-reaction for the oxidation that occurs is
1) $\mathrm{Mg}+2 \mathrm{e}-\rightarrow \mathrm{Mg}^{2+}$
2) $\mathrm{Cl}_{2}+2 \mathrm{e}-\rightarrow 2 \mathrm{Cl}^{-1}$
3) $\mathrm{Mg} \rightarrow \mathrm{Mg}^{2+}+2 \mathrm{e}-$
4) $\mathrm{Cl}_{2} \rightarrow 2 \mathrm{Cl}^{-1}+2 \mathrm{e}-$
4. Given the reaction: $\mathrm{Zn}(\mathrm{s})+2 \mathrm{HCl}(\mathrm{aq}) \rightarrow \mathrm{ZnCl}_{2}(\mathrm{aq})+\mathrm{H}_{2}(\mathrm{~g}) \quad$ Which equation represents the correct oxidation half-reaction?
1) $\mathrm{Zn}(\mathrm{s}) \rightarrow \mathrm{Zn}^{2+}+2 \mathrm{e}-$
2) $2 \mathrm{H}+2 \mathrm{e}-\rightarrow \mathrm{H}_{2}(\mathrm{~g})$
3) $\mathrm{Zn}^{2+}+2 \mathrm{e} \rightarrow \mathrm{Zn}(\mathrm{s})$
4) $2 \mathrm{Cl}^{-1} \rightarrow \mathrm{Cl}_{2}(\mathrm{~g})+2 \mathrm{e}-$
5. Given the reaction: $3 \mathrm{Sn}^{4+}(\mathrm{aq})+2 \mathrm{Cr}(\mathrm{s}) \rightarrow 3 \mathrm{Sn}^{2+}(\mathrm{aq})+2 \mathrm{Cr}^{3+}(\mathrm{aq}) \quad$ Which half-reaction correctly represents the reduction that occurs?
1) $\mathrm{Sn}^{4+}(\mathrm{aq})+2 \mathrm{e}-\rightarrow \mathrm{Sn}^{2+}(\mathrm{aq})$
2) $\mathrm{Sn}^{2+}(\mathrm{aq}) \rightarrow \mathrm{Sn}^{4+}(\mathrm{aq})+2 \mathrm{e}-$
3) $\mathrm{Cr}(\mathrm{s}) \rightarrow \mathrm{Cr}^{3+}(\mathrm{aq})+3 \mathrm{e}-$
4) $\mathrm{Cr}^{3+}(\mathrm{aq})+3 \mathrm{e}-\rightarrow \mathrm{Cr}(\mathrm{s})$

When determining total voltage power as a result of the oxidation and reduction reactions, you must use the Standard Reduction Potentials table to determine voltages

* The table only lists Reduction Half Reactions, so you will need to reverse the direction of each equation on the table to find the oxidation reaction
* The voltage sign will then also need to be reversed for the oxidation voltage

Ex) Reduction potential: $\mathrm{Pb}^{+2}+2 \mathrm{e}-\rightarrow \mathrm{Pb}^{0}=$ Oxidation potential: $\mathrm{Pb}^{+2}+2 \mathrm{e}-\leftarrow \mathrm{Pb}^{0}=$ \qquad V
*To determine the total voltage (E^{0} total $)$ by adding the two voltages

* If overall voltage total is positive = reaction is \qquad
* If overall voltage total is negative $=$ reaction is \qquad

Example 1: $\quad \mathrm{Sr}(\mathrm{s})+\mathrm{Ni}^{+2}(\mathrm{aq}) \rightarrow \mathrm{Sr}^{+2}(\mathrm{aq})+\mathrm{Ni}(\mathrm{s})$

Oxidation: \qquad $E^{\circ}(V)$ \qquad

Reduction: \qquad $E^{\circ}(V)$ \qquad

Balanced
Redox Reaction: \qquad E° total (V) \qquad

Example 2: $\mathrm{Ag}^{+1}(\mathrm{aq})+\mathrm{Sn}^{+2}(\mathrm{aq}) \rightarrow \mathrm{Ag}(\mathrm{s})+\mathrm{Sn}^{+4}(\mathrm{aq})$

Oxidation: \qquad $E^{\circ}(V)$ \qquad

Reduction: \qquad $E^{\circ}(\mathrm{V})$ \qquad

Balanced
Redox Reaction: \qquad E^{o} total (V) \qquad

Example 3: $\quad \mathrm{Co}(\mathrm{s})+\mathrm{Li}^{+1}(\mathrm{aq}) \rightarrow \mathrm{Co}^{+2}(\mathrm{aq})+\mathrm{Li}(\mathrm{s})$

Oxidation: \qquad $E^{\circ}(V)$ \qquad

Reduction: \qquad $E^{\circ}(V)$ \qquad

Balanced
Redox Reaction: \qquad E° total (V) \qquad

Voltage and Redox Reactions

1. Which reduction half-reaction has a standard electrode potential (E^{0}) of 1.50 volts?
1) $\mathrm{Au}^{3+}+3 \mathrm{e}-\rightarrow \mathrm{Au}(\mathrm{s})$
2) $\mathrm{Al}^{3+}+3 \mathrm{e}-\rightarrow \mathrm{Al}(\mathrm{s})$
3) $\mathrm{Co}^{2+}+2 \mathrm{e}-\rightarrow \mathrm{Co}(\mathrm{s})$
4) $\mathrm{Ca}^{2+}+2 \mathrm{e}-\rightarrow \mathrm{Ca}(\mathrm{s})$
2. Given the reaction: $\mathrm{Mg}+\mathrm{Fe}^{2+} \rightarrow \mathrm{Mg}^{2+}+\mathrm{Fe}$ What is the net cell potential (E) for the overall reaction?
1) 0.45 V
2) 1.93 V
3) 2.37 V
4) 2.82 V
3. Given the reaction: $3 \mathrm{Zn}(\mathrm{s})+2 \mathrm{Au}^{3+}(\mathrm{aq}) \rightarrow 3 \mathrm{Zn}^{2+}(\mathrm{aq})+2 \mathrm{Au}(\mathrm{s}) \quad$ What is the maximum cell voltage (E^{0}) for the overall reaction?
1) +1.50 V
2) +2.26 V
3) +5.28 V
4) +0.74 V
4. Given the reaction: $2 \mathrm{Cr}(\mathrm{s})+3 \mathrm{~Pb}^{2+}(\mathrm{aq}) \rightarrow 2 \mathrm{Cr}^{3+}(\mathrm{aq})+3 \mathrm{~Pb}(\mathrm{~s}) \quad$ The cell voltage $\left(\mathrm{E}^{0}\right)$ for the overall reaction is
1) 0.61 volts
2) 0.87 volts
3) 1.09 volts
4) 1.87 volts
5. Given the chemical cell reaction: $2 \mathrm{Ag}^{+1}+\mathrm{Zn}^{0} \rightarrow 2 \mathrm{Ag}^{0}+\mathrm{Zn}^{2+} \quad$ What is the net potential $\left(\mathrm{E}^{0}\right)$ for the cell?
1) 1.56 V
2) 2.36 V
3) 0.84 V
4) 0.04 V

Objective \#5: Knowing and labeling Voltaic Cells

Voltaic Cells: \qquad redox reactions in which energy is used and converted to \qquad energy

- The transfer of electrons from the species undergoing oxidation to the species undergoing reduction produces a \qquad voltage reading
- This type of cell is commonly called \qquad !!

Parts of a voltaic cell

a) Half Cell: container(s) where the oxidation and reduction reactions occur There are two half cells to make up the total cell
b) Electrodes: metal samples used that are capable of conducting an electric current

Anode: \qquad

Cathode: \qquad
** MUST USE REFERENCE TABLE J ACTIVITY SERIES to determine which electrode is the anode (metal with \qquad activity) and which electrode is the cathode (metal with \qquad activity)
c) Wire : \qquad

- Electrons will always flow from the \qquad to the \qquad
d) Salt bridge: \qquad
e) Electrolyte(s):
* ions in solution should be the same as the metal electrode

Example: Cu metal in a solution with Cu^{+2} ions
Fe metal in a solution with Fe^{+2} or Fe^{+3} ions
f) Voltmeter: \qquad

Voltaic Cell Diagram

Example problem: $\quad \mathrm{Zn}(\mathrm{s})+\mathrm{Cu}^{+2}(\mathrm{aq}) \rightarrow \mathrm{Zn}^{+2}(\mathrm{aq})+\mathrm{Cu}(\mathrm{s})$

| Oxidation: | |
| :---: | :---: | :---: |
| Reduction: | |
| Balanced
 Redox Reaction: | |
| $\mathrm{E}^{\circ}(\mathrm{V})$ | |
| Example problem: | $\mathrm{Mg}(\mathrm{s})+\mathrm{Al}^{\circ}(\mathrm{V})$ |

$\mathrm{Mg}(\mathrm{s})+\mathrm{Al}^{+3}(\mathrm{aq}) \rightarrow \mathrm{Al}(\mathrm{s})+\mathrm{Mg}^{+2}(\mathrm{aq})$

Oxidation: \qquad $E^{\circ}(\mathrm{V})$ \qquad

Reduction:
$E^{\circ}(\mathrm{V})$ \qquad

Balanced
Redox Reaction: \qquad

Voltaic Cells

\qquad 1) A voltaic cell spontaneously converts

1) electrical energy to chemical energy
2) chemical energy to electrical energy
3) electrical energy to nuclear energy
4) nuclear energy to electrical energy
5) Given the redox reaction in an electrochemical cell:

$$
\mathrm{Ni}(\mathrm{~s})+\mathrm{Pb}^{2+}(\mathrm{aq}) \leftrightarrow \mathrm{Ni}^{2+}(\mathrm{aq})+\mathrm{Pb}(\mathrm{~s})
$$

A salt bridge is used to connect

1) $\mathrm{Ni}(\mathrm{s})$ and $\mathrm{Pb}(\mathrm{s})$
2) $\mathrm{Pb}^{2+}(\mathrm{aq})$ and $\mathrm{Ni}^{2+}(\mathrm{aq})$
3) $\mathrm{Ni}(\mathrm{s})$ and $\mathrm{Ni}^{2+}(\mathrm{aq})$
4) $\mathrm{Pb}^{2+}(\mathrm{aq})$ and $\mathrm{Pb}(\mathrm{s})$
5) Which statement is true for any electrochemical cell?
6) Oxidation occurs at the anode, only.
7) Reduction occurs at the anode, only.
8) Oxidation occurs at both the anode and the cathode.
9) Reduction occurs at both the anode and the cathode.
10) In an oxidation-reduction reaction, the number of electrons lost is
11) equal to the number of electrons gained
12) equal to the number of protons gained
13) less than the number of electrons gained
14) less than the number of protons gained
15) The redox reaction in a battery during discharge can best be described as
16) non-spontaneous and occurring in a chemical
cell
17) spontaneous and occurring in a chemical cell
18) non-spontaneous and occurring in an electrolytic cell
19) spontaneous and occurring in an electrolytic cell
20) Base your answer to the following question on the equation and diagram below represent an electrochemical cell at 298 K and 1 atmosphere.

Which species is oxidized when the switch is closed?

1) $\mathrm{Mg}(\mathrm{s})$
2) $\mathrm{Mg}^{2+}(\mathrm{aq})$
3) $\mathrm{Ag}(\mathrm{s})$
4) $\mathrm{Ag}^{+}(\mathrm{aq})$
5) Given the overall cell reaction:

$$
\mathrm{Zn}(\mathrm{~s})+2 \mathrm{Ag}^{+}(\mathrm{aq}) \rightarrow \mathrm{Zn}^{2+}(\mathrm{aq})+2 \mathrm{Ag}(\mathrm{~s})
$$

Which will occur as the cell operates?

1) The amount of $\mathrm{Zn}(\mathrm{s})$ will increase.
2) The amount of $\mathrm{Ag}(\mathrm{s})$ will decrease.
3) The concentration of $\mathrm{Zn}^{+2}(\mathrm{aq})$ will increase.
4) The concentration of $\mathrm{Ag}^{+}(\mathrm{aq})$ will increase.
5) Which component of an electrochemical cell is correctly paired with its function?
6) external conductor - allows the solutions to mix
7) external conductor - permits the migration of ions
8) salt bridge - allows the solutions to mix
9) salt bridge - permits the migration of ions
10) Base your answer to the following question on the diagram of the chemical cell at 298 K and on the equation below.

In the given reaction, the Ag^{+}ions

1) gain electrons
2) gain protons
3) lose electrons
4) lose protons

Base your answers to questions 10 and 11 on the diagram below which represents a chemical cell at 298 K and 1 atmosphere.

10 Which species represents the cathode?

1) Zn
2) Zn^{2+}
3) Cu
4) Cu^{2+}
\qquad 11) When switch S is closed, electrons in the external circuit will flow from
5) Zn to Zn^{2+}
6) Zn to Cu
7) Cu to Zn^{2+}
8) Cu to Zn
\qquad 12) Base your answer to the following question on the diagram of the chemical cell shown below. The reaction occurs at 1 atmosphere and 298 K.

$$
\mathrm{Zn}^{0}(\mathrm{~s})+\mathrm{Pb}^{2+}(\mathrm{aq}) \longrightarrow \mathrm{Zn}^{2+}(\mathrm{aq})+\mathrm{Pb}^{0}(\mathrm{~s})
$$

When the switch is closed, what occurs?

1) Pb is oxidized and electrons flow to the Zn electrode.
2) Pb is reduced and electrons flow to the Zn electrode.
3) Zn is oxidized and electrons flow to the Pb electrode.
4) Zn is reduced and electrons flow to the Pb electrode.
5) A student collects the materials and equipment below to construct a voltaic cell:

- two $250-\mathrm{mL}$ beakers
- wire and a switch
- one strip of magnesium
- one strip of copper
- 125 mL of $0.20 \mathrm{M} \mathrm{Mg}_{\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq})}$
- 125 mL of $0.20 \mathrm{M} \mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}$ (aq)

Which additional item is required for the construction of the voltaic cell?

1) an anode
2) a cathode
3) a battery
4) a salt bridge
5) Which ionic equation is balanced?
6) $\mathrm{Fe}^{3+}+\mathrm{Al} \rightarrow \mathrm{Fe}^{2+}+\mathrm{Al}^{3+}$
7) $\mathrm{Fe}^{3+}+3 \mathrm{Al} \rightarrow \mathrm{Fe}^{2+}+3 \mathrm{Al}^{3+}$
8) $3 \mathrm{Fe}^{3+}+\mathrm{Al} \rightarrow 3 \mathrm{Fe}^{2+}+\mathrm{Al}^{3+}$
9) $3 \mathrm{Fe}^{3+}+\mathrm{Al} \rightarrow \mathrm{Fe}^{2+}+3 \mathrm{Al}^{3+}$

Objective \#6: Knowing and labeling Electrolytic Cells

Electrolytic Cells: \qquad reactions in which a battery (voltaic cell) is used to force a chemical reaction to occur

- \qquad energy from the battery causes \qquad energy, which drives a chemical reaction that otherwise normally would not occur

There are two types of electrolytic cells to know: Electrolysis and Electroplating

1. Electrolysis

Hydrogen and oxygen are very plentiful on earth, but they are both so reactive that they are only found in compounds. We commonly use the electricity in electrolysis to separate and collect the two gases.
$2 \mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \rightarrow 2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})$

Electrolysis

1) The reaction $2 \mathrm{H}_{2} \mathrm{O}(i) \rightarrow 2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})$ is forced to occur by use of an externally applied electric current. This procedure is called
2) neutralization
3) esterification
4) electrolysis
5) hydrolysis
6) An electrolytic cell differs from a voltaic cell because an electrolytic cell
7) generates its own energy from a spontaneous physical reaction
8) generates its own energy from a nonspontaneous physical reaction
9) requires an outside energy source for a spontaneous chemical reaction to occur
10) requires an outside energy source for a nonspontaneous chemical reaction to occur
11) Where do reduction and oxidation occur in an electrolytic cell?
12) Both occur at the anode.
13) Both occur at the cathode.
14) Reduction occurs at the anode, and oxidation occurs at the cathode.
15) Reduction occurs at the cathode, and oxidation occurs at the anode.
\qquad 4) Which energy conversion occurs in an operating electrolytic cell?
16) chemical energy to electrical energy
17) nuclear energy to thermal energy
18) electrical energy to chemical energy
19) thermal energy to nuclear energy
\qquad 5) In an electrolytic cell, the positive electrode is the
20) anode, where oxidation occurs
21) cathode, where oxidation occurs
22) anode, where reduction occurs
23) cathode, where reduction occurs
24) In an electrolytic cell, a negative ion will migrate to and undergo oxidation at the
25) anode, which is negatively charged
26) cathode, which is negatively charged
27) anode, which is positively charged
28) cathode, which is positively charged
29) In an electrolytic cell, the negative electrode is called the
30) anode, at which oxidation occurs
31) cathode, at which oxidation occurs
32) anode, at which reduction occurs
33) cathode, at which reduction occurs
34) Given the reaction:
$2 \mathrm{H}_{2} \mathrm{O}+$ electricity $\rightarrow \mathbf{2} \mathrm{H}_{2}+\mathrm{O}_{2}$

In which type of cell would this reaction most likely occur?

1) a voltaic cell, because it is releases energy
2) an electrolytic cell, because it releases energy
3) a voltaic cell, because it requires energy
4) an electrolytic cell, because it requires energy

2. Electroplating

Electroplating is the process of coating an object with a chosen metal, such as plating a ring with gold or a spoon with silver. The electricity from a battery is used to power the process; this energy forces a metal to plate (or coat) another object capable of conducting electricity. Gold, Silver, Copper and Palladium are just some of the common metals used in electroplating.

Electroplating

1) A metal object is to be electroplated with silver. Which set of electrodes should be used?
2) a silver anode and a metal object as the cathode
3) a platinum anode and a metal object as the cathode
4) a silver cathode and a metal object as the anode
5) a platinum cathode and a metal object as the anode

Base your answers to questions $\mathbf{2}$ and $\mathbf{3}$ on the diagram below which represents the electroplating of a metal fork with $\mathrm{Ag}(\mathrm{s})$.

\qquad 2) Which equation represents the half-reaction that takes place at the fork?

1) $\mathrm{Ag}^{+}+\mathrm{NO}_{3}^{-} \rightarrow \mathrm{AgNO}_{3}$
2) $\mathrm{AgNO}_{3} \rightarrow \mathrm{Ag}^{+}+\mathrm{NO}_{3}^{-}$
3) $\mathrm{Ag}^{+}+\mathrm{e}^{-} \rightarrow \mathrm{Ag}(\mathrm{s})$
4) $\mathrm{Ag}(\mathrm{s}) \rightarrow \mathrm{Ag}^{+}+\mathrm{e}^{-}$
\qquad 3) Which part of the electroplating system is provided by the fork?
5) the anode, which is the negative electrode
6) the cathode, which is the negative electrode
7) the anode, which is the positive electrode
8) the cathode, which is the positive electrode

Base your answers to questions $\mathbf{4}$ and $\mathbf{5}$ on the diagram below of an electrolytic cell in which the electrodes are tin and copper.

4) In this electrolytic cell, electrode A is designated as the

1) anode and is positive
2) cathode and is positive
3) anode and is negative
4) cathode and is negative
5) When the switch is closed, what will happen to the two electrodes?
6) B will dissolve and A will become coated with tin.
7) A will dissolve and B will become coated with tin.
8) B will dissolve and A will become coated with copper.
9) A will dissolve and B will become coated with copper.
10) Which statement best describes the key?

11) It acts as the cathode and is negative. 3) It acts as the anode and is negative.
12) It acts as the cathode and is positive.
13) It acts as the anode and is positive.
\qquad 7) The diagram below shows a key being plated with copper in an electrolytic cell

Given the reduction reaction for this cell:

$$
\mathrm{Cu}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Cu}(\mathrm{~s})
$$

This reduction occurs at

1) A, which is the anode
2) A, which is the cathode
3) B, which is the anode
4) B, which is the cathode
5) The diagram below shows a spoon that will be electroplated with nickel metal.

What will occur when switch S is closed?

1) The spoon will lose mass, and the $\mathrm{Ni}(\mathrm{s})$ will be reduced.
2) The spoon will lose mass, and the $\mathrm{Ni}(\mathrm{s})$ will be oxidized.
3) The spoon will gain mass, and the $\mathrm{Ni}(\mathrm{s})$ will be reduced.
4) The spoon will gain mass, and the $\mathrm{Ni}(\mathrm{s})$ will be oxidized.
