ORGANIC CHEMISTRY

Organic Chemistry is the study of \qquad compounds. The name "ORGANIC" is a remnant of a time when it was thought that carbon compounds could only be made by living things; hence the name organic. Today it is widely recognized that organic chemistry contains far more compounds that only those made by living things. The number of organic compounds is enormous. Tens of thousands or new organic compounds are discovered every year, and there seems to be no end in sight to future discoveries.

Objective \#1: Know the properties of Organic Compounds

- Compounds are \qquad bonded
\qquad melting and boiling points
\qquad conductors
- Molecules tend to be \qquad and don't dissolve easily in water (polar)
- React very \qquad due to the large number of \qquad within
- Organic compounds form \qquad or \qquad of carbon atoms

Objective \#2: Know the ways to represent Organic Compounds

a) Molecular Formula

- Chemical formula that indicates how many and what kind of atoms there are

b) Structural Formula

- Illustration that shows the bonds between the atoms, as well as the type of atoms and how many atoms there are

c) Condensed Structural Formula

- Shows the bonding pattern without the chemical bonds

Objective \#3: Identify and Describe Hydrocarbons

Hydrocarbons are compounds that contain only \qquad and \qquad atoms. A homologous series of compounds is a group of related compounds in which each member differs from the one before it by the same additional unit.

Table Q
 Homologous Series of Hydrocarbons

Name	General Formula	Examples	
		Name	Structural Formula
alkanes	$\mathrm{C}_{n} \mathrm{H}_{2 n+2}$	ethane	
alkenes	$\mathrm{C}_{n} \mathrm{H}_{2 n}$	ethene	
alkynes	$\mathrm{C}_{n} \mathrm{H}_{2 n-2}$	ethyne	$\mathrm{H}-\mathrm{C} \equiv \mathrm{C}-\mathrm{H}$

Note: $n=$ number of carbon atoms

A) Straight-Chain Hydrocarbons

ALKANES: chain of carbon atoms with \qquad bonds only;

- \qquad because each of the four bonding sites around the carbon atom is occupied with a hydrogen atom

ALKENES: chain of carbon atoms with one \qquad bond with in the chain, with the rest as single bonds

- \qquad organic compounds

ALKYNES: chain of carbon atoms with one \qquad bond with in the chain, with the rest as single bonds

- \qquad organic compounds

1) Which of the following substances is organic?
a) NaCl
b) NH_{3}
c) CH_{4}
d) $\mathrm{H}_{2} \mathrm{O}$
2) When 2 carbon atoms form a single bond, how many pairs of e-will be shared between them? \qquad
3) When 2 carbon atoms form a double bond, how many pairs of e-will be shared between them? \qquad
4) When 2 carbon atoms form a triple bond, how many pairs of e-will be shared between them? \qquad
5) An alkANE has 5 carbon atoms.
a) What is the general formula for alkanes? \qquad
b) How many Hydrogen atoms will it have? \qquad
6) An alkENE has 3 carbon atoms.
a) What is the general formula for alkenes? \qquad
b) How many Hydrogen atoms will it have? \qquad
7) An alkYNE has 4 carbon atoms.
a) What is the general formula for alkynes? \qquad
b) How many Hydrogen atoms will it have? \qquad

Organic Introduction Practice

1. Which formula represents an unsaturated hydrocarbon?
A)

B)

C)

D)

2. Which organic compound is a saturated hydrocarbon?
A) ethyne
B) ethanol
C) ethene
D) ethane
3. Which formula represents a hydrocarbon?
A) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CHO}$
B) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$
C) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{COOH}$
D) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOCH}_{3}$
4. Which structural formula correctly represents a hydrocarbon molecule?
A)

B)

C)

D)

5. In saturated hydrocarbons, carbon atoms are bonded to each other by
A) single covalent bonds, only
C) alternating single and double covalent bonds
B) double covalent bonds, only
D) alternating double and triple covalent bonds
6. What is the general formula for the members of the alkane series?
A) $\mathrm{CnH} 2 n$
B) $\mathrm{CnH}_{2 n-2}$
C) $\mathrm{C} n \mathrm{H} 2 n+2$
D) $\mathrm{C} n \mathrm{H} 2 n-6$
7. In which group could the hydrocarbons all belong to the same alkene series?
A) $\mathrm{C}_{2} \mathrm{H}_{2}, \mathrm{C}_{2} \mathrm{H}_{4}, \mathrm{C}_{2} \mathrm{H}_{6}$
B) $\mathrm{C}_{2} \mathrm{H}_{2}, \mathrm{C}_{2} \mathrm{H}_{4}, \mathrm{C}_{4} \mathrm{H}_{8}$
C) $\mathrm{C}_{2} \mathrm{H}_{4}, \mathrm{C}_{2} \mathrm{H}_{6}, \mathrm{C}_{3} \mathrm{H}_{6}$
D) $\mathrm{C}_{2} \mathrm{H}_{4}, \mathrm{C}_{3} \mathrm{H}_{6}, \mathrm{C}_{4} \mathrm{H}_{8}$
8. A molecule of propyne has
A) all single bonds
B) a double bond
C) a triple bond
D) no bonds
9. A double carbon-carbon bond is found in a molecule of
A) pentane
B) pentyne
C) pentene
D) pentanol
10. The multiple covalent bond in a molecule of butene is a
A) double bond that has 6 shared electrons
C) triple bond that has 6 shared electrons
B) double bond that has 4 shared electrons
D) triple bond that has 4 shared electrons

Objective \#4: Naming and Drawing Straight - Chain Hydrocarbons

A) Naming Straight-Chain Hydrocarbons

1) Count the number of carbon atoms in the chain to determine the prefix using Reference Table P.
2) The suffix will depend on if there are single bonds only, a double bond somewhere in the chain or a triple bond somewhere in the chain.

- If there are all single bonds only, end with the suffix \qquad .

Table \mathbf{P} Organic Prefixes

Prefix	Number of Carbon Atoms
meth-	1
eth-	2
prop-	3
but-	4
pent-	5
hex-	6
hept-	7
oct-	8
non-	9
dec-	10

- If there is a double bond somewhere in the chain, end with the suffix \qquad . Then you must provide a number indicating what carbon atom in the chain the double bond falls after. Number in the direction that provides the lowest number
- If there is a triple bond somewhere in the chain, end with the suffix \qquad . Then you must provide a number indicating what carbon atom in the chain the triple bond falls after. Number in the direction that provides the lowest number

2)

3)

4)

) Drawing Straight-Chain Hydrocarbons

1) Use the prefix given in the name to draw the carbon chain without the bonds between them.
2) Use the suffix given to determine if there are only single bonds (-ane) between the carbon atoms, or if there is a double bond (-ene) or triple bond (-yne) somewhere in the chain.

- If the suffix is -ane, draw all single bonds between the carbon atoms, and then ensure that every carbon atom is bonded to the maximum number of hydrogen atoms possible.
- If the suffix is -ene, you must use the number provided to determine what carbon atom in the chain to place the double bond after. The rest of the carbon atoms in the chain are bonded with single bonds, and then ensure that every carbon atom is bonded to the maximum number of hydrogen atoms possible.
- If the suffix is -yne, you must use the number provided to determine what carbon atom in the chain to place the triple bond after. The rest of the carbon atoms in the chain are bonded with single bonds, and then ensure that every carbon atom is bonded to the maximum number of hydrogen atoms possible.

1) methane
2) 1 - butene
3) propyne
4) 3 - heptene
5) pentane
6) 2 - hexyne

Hydrocarbon Naming and Formula Practice

1. Given the structure:

What is the IUPAC name of this compound?
A) 2-pentene
B) 2 - butane
C) 2-pentyne
D) 2-butyne
2. Given the structural formula:

What is the IUPAC name of this compound?
A) propane
B) propene
C) propanone
D) propanal
3. What is the correct formula for butene?
A) $\mathrm{C}_{4} \mathrm{H}_{4}$
B) $\mathrm{C}_{4} \mathrm{H}_{6}$
C) $\mathrm{C}_{4} \mathrm{H}_{8}$
D) $\mathrm{C}_{4} \mathrm{H}_{10}$
4. Which general formula represents the homologous series of hydrocarbons that includes the compound I-heptyne?
A) $\mathrm{CnH} 2 \mathrm{n}-6$
B) $\mathrm{CnH} 2 \mathrm{n}-2$
C) $\mathrm{CnH}_{2 n}$
D) $\mathrm{CnH} 2 \mathrm{n}+2$
5. Which compound is an unsaturated hydrocarbon?
A) hexanal
B) hexane
C) hexanoic acid
D) hexyne
6. Given the structural formula: $\quad \mathrm{H}-\mathrm{C} \equiv \mathrm{C}-\mathrm{H}$

What is the total number of electrons shared in the bond between the two carbon atoms?
A) 2
B) 3
C) 4
D) 6
7. Which formula represents propyne?
A) $\mathrm{C}_{3} \mathrm{H}_{4}$
B) $\mathrm{C}_{3} \mathrm{H}_{6}$
C) $\mathrm{C}_{5} \mathrm{H}_{8}$
D) $\mathrm{C}_{5} \mathrm{H}_{10}$
8. What is the name of a compound that has the molecular formula $\mathrm{C}_{4} \mathrm{H}_{6}$?
A) butane
B) butene
C) benzene
D) butyne

Objective \#5: Naming and Drawing Branched Chain Hydrocarbons

Branched chain hydrocarbons have small \qquad of carbons off a longer main chain organic compound. To distinguish a "branch" from the main chain, a \qquad ending is used.

- 1 carbon branch: \qquad
- 2 carbon branch: \qquad
- 3 carbon branch: \qquad
A) To name branched chain hydrocarbons

1) Number the carbon atoms in the main chain (longest stretch of carbon atoms) in such a way that the location of the branches will have the lowest numbers possible.
2) Start with the branches. Provide the number of the carbon atom in the chain that it falls on, along with the appropriate branch name. If there is more than one branch of carbon atoms on the main chain, start with the lowest number first and proceed from there.
3) Then name the main chain. Use Table P for the prefix and Table Q for the suffix.
4)

2)

3)

4)

B) To draw branched chain hydrocarbons

1) Use the prefix from Table P to determine how many carbon atoms to place in the main chain. The -ane ending will indicate that all the carbon atoms in the main chain are bonded with a single bond.
2) Number the main chain of carbon atoms. This time the direction you choose to number does not matter.
3) With the number provided for each branch, locate the carbon atom in the main chain and place the correct number of carbon atoms off the main chain for the branch. It does not matter if you place the chain on above or below the main chain.
4) Then ensure that every carbon atom in the main chain AND the branch is bonded to the maximum number of hydrogen atoms possible.
5) 2-propyl butane
6) 2-methyl-2-ethyl pentane
7) 2,4 - dimethyl hexane

Some organic compounds contain a carbon chain with other elements besides hydrogen atoms attached

- some of the hydrogen atoms are replaced with a \qquad
\qquad
and/or \qquad atom(s)

Table R
Organic Functional Groups

Class of Compound	Functional Group	General Formula	Example
halide (halocarbon)	-F (fluoro-) -Cl (chloro-) -Br (bromo-) - I (iodo-)	$R-X$ (X represents any halogen)	$\mathrm{CH}_{3} \mathrm{CHClCH}_{3}$ 2-chloropropane
alcohol	- OH	R-OH	$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}$ 1-propanol
ether	- $\mathrm{O}-$	$R-\mathrm{O}-\mathrm{R}^{\prime}$	$\mathrm{CH}_{3} \mathrm{OCH}_{2} \mathrm{CH}_{3}$ methyl ethyl ether
aldehyde			 propanal
ketone			 2-pentanone
organic acid			 propanoic acid
ester			 methyl propanoate
amine	$\stackrel{\mathrm{I}}{\mathrm{~N}}-$		$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}$ 1-propanamine
amide			

Note: R represents a bonded atom or group of atoms.

Identify family: \qquad
Name: \qquad

Identify family: \qquad Name: \qquad

Identify family: \qquad
Name: \qquad

Identify family: \qquad
Name: \qquad

Identify family: \qquad
Name: \qquad

Name	Family	Structural Formula
1-iodopropane		
2-Pentanone		
Ethanamine		
Butanamide		
Methyl Ethanoate		
Methyl propyl ether		
Propanoic Acid		

Functional Group Questions

\qquad 1. Given the formula for an organic compound:

This compound is classified as an
A) aldehyde
B) amine
C) ester
D) organic acid
2. Which of these compounds has chemical properties most similar to the chemical properties of ethanoic acid?
A) $\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{COOH}$
B) $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$
C) $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{COOC}_{2} \mathrm{H}_{5}$
D) $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OC}_{2} \mathrm{H}_{5}$
3. A compound with the formula $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}$ is classified as an
A) alkane
B) alkene
C) alcohol
D) acid
4. Which compound is a primary alcohol?
A)

B)

C)

D)

\qquad 5. The compound 2-propanol is classified as a
A) primary alcohol
B) secondary alcohol
C) tertiary alcohol
D) dihydroxy alcohol
\qquad 6. The organic compound represented by the condensed structural formula $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CHO}$ is classified as an
A) alcohol
B) aldehyde
C) ester
D) ether
7. Which formula represents a ketone?
A) HCOOH
B) HCHO
C) $\mathrm{CH}_{3} \mathrm{COCH}_{3}$
D) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}$
$-$ 8. Which is the structural formula of an aldehyde?
A)

B)

C)

D)

$-$
9.

Which is represented by the structural formula above?
A) an aldehyde
B) an alcohol
C) an alkane
D) an acid
-
10. What is the IUPAC name of the compound with the following structural formula?

A) propanone
B) propanal
C) butanone
D) butanal
\qquad 11. What is the correct IUPAC name for

A) 1,2-dichlorobutane
B) 2,3-dichlorobutane
C) 1,2-dichloropropane
D) 2,3-dichloropropane
12. The isomers 1 -chloropropane and 2-chloropropane differ only in
A) molecular composition
B) molecular structure
C) the number of chloro- groups per molecule
D) the number of carbon atoms per molecule
13. Which compound is an ester?
A) $\mathrm{CH}_{3} \mathrm{COOH}$
B) $\mathrm{CH}_{3} \mathrm{CHO}$
C) $\mathrm{CH}_{3} \mathrm{COOCH}_{3}$
D) $\mathrm{CH}_{3} \mathrm{COCH}_{3}$
14. The compound $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOCH}_{3}$ is an example of
A) an ester
B) an alcohol
C) an acid
D) a polymer
15. Given the structural formula:

This compound is classified as an
A) amide
B) amine
C) aldehyde
D) alcohol
16. Which class of organic compounds has molecules that contain nitrogen atoms?
A) alcohol
B) amine
C) ether
D) ketone
17. Which structural formula represents diethyl ether?
A)

B)

C)

D)

\qquad 18. What is the general formula for an ether?
A) $\mathrm{R}-\mathrm{OH}$
B)

C) $R-O-R^{\prime}$
D)

19. Butanal and butanone have different chemical and physical properties primarily because of differences in their
A) functional groups
B) molecular masses
C) molecular formulas
D) number of carbon atoms per molecule
20. Atoms of which element can bond with each other to form ring and chain structures in compounds?
A) C
B) Ca
C) H
D) Na

Objective \#7: Draw and Identify Organic Isomers

Isomers are organic compounds with the same \qquad formulas but different
\qquad formulas, as well as different chemical and physical properties

- There are usually many different ways to draw the isomers of an organic compound

Examples:

1. Draw the isomers for $\mathrm{C}_{4} \mathrm{H}_{10}$.
2. Draw all the isomers of $\mathrm{C}_{4} \mathrm{H}_{6}$.
3. Draw all the isomers of $\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{Cl}$.

Isomer Questions

1. Which two compounds are isomers of each other?
A) $\mathrm{CH}_{3} \mathrm{OCH}_{3}$ and $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}$
B) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{Cl}$ and $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Cl}$
C) $\mathrm{CH}_{3} \mathrm{COCH}_{3}$ and $\mathrm{CH}_{3} \mathrm{OCH}_{3}$
D) $\mathrm{CH}_{3}(\mathrm{CH})_{2} \mathrm{CH}_{3}$ and $\mathrm{CH}_{3}(\mathrm{CH})_{2} \mathrm{CH}_{3}$
2. Which compound has an isomer?
A)

B)

C)

D)

3. Which structural formula represents an isomer of 1-propanol?
A)

B)

C)

D)

4. The compounds $\mathrm{CH}_{3} \mathrm{OCH}_{3}$ and $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}$ are isomers of each other. These two compounds must have the same
A) density
B) reactivity
C) melting point
D) molecular formula
5. Given the structural formulas:

Formula A	Formula B	Formula C	Formula D

Which two formulas represent compounds that are isomers of each other?
A) A and B
B) A and C
C) B and D
D) C and D
6. Which structural formula represents an isomer of

A)

B)

C)

D)

\qquad 7. Given the compound:

Which structural formula represents an isomer?
A)

B)

C)

D)

8. Given the compound:

Which structural formula represents an isomer?
A)

B)

C)

D)

9. Which compound is an isomer of propanoic acid $\left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH}\right)$?
A) $\mathrm{CH}_{2} \mathrm{CHCOOH}$
B) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{COOH}$
C) $\mathrm{CH}_{3} \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{2} \mathrm{OH}$
D) $\mathrm{HCOOCH}_{2} \mathrm{CH}_{3}$
10. Which is an isomer of

A)

B)

C)

D)

11. Which compounds are isomers?
A) $\mathrm{CH}_{3} \mathrm{OH}$ and $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}$
B) CH_{4} and CCl_{4}
C) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CHO}$ and $\mathrm{CH}_{3} \mathrm{COCH}_{3}$
D) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}$ and $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH}$
12. Which formula represents an isomer of the compound propanoic acid, $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH}$?
A) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}$
B) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{COOH}$
C) $\mathrm{CH}_{3} \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{2} \mathrm{OH}$
D) $\mathrm{CH}_{3} \mathrm{COOCH}_{3}$

Objective \#8: Know the Types of Organic Reactions

Reaction \#1: Combustion

When sufficient oxygen is present, hydrocarbons will burn to produce \qquad and

Write the balanced equation for the complete combustion of propane $\left(\mathrm{C}_{3} \mathrm{H}_{8}\right)$.

Reaction \#2: Substitution
A substitution reaction involves the replacement of one or more \qquad atoms in a
\qquad hydrocarbon with another \qquad or \qquad —.

For example, \qquad atoms can replace hydrogens

Methane + Bromine \rightarrow
\qquad $+$ \qquad

Reaction \#3: Addition

Addition reactions involve adding one or more atoms at a \qquad or \qquad bond.

When propene and bromine react below, the \qquad bond is \qquad and turned into
a \qquad bond, and the bromine atoms are added to the carbon chain to produce ONE product.

Propene

Reaction 4: Saponification

A \qquad reacts with a strong base (-OH ion) to produce \qquad (rearrange: S A P O)

- Most common strong base used in making soap is \qquad
$X=\mathrm{Na}, \mathrm{K}$, etc.

Free Fatty Acid Base Soap Water

Reaction \#5: Fermentation

In a fermentation reaction, yeast cells break down \qquad into an \qquad and \qquad —.

$\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6} \xrightarrow{\text { Yeastzymase }} 2 \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$	$+2 \mathrm{CO}_{2}$
Sugar	ethanol

Reaction \#4: Esterification

Esterification is the reaction between an \qquad and an \qquad to produce an \qquad plus \qquad . Many compounds found in fruits can be prepared in the laboratory using an esterification reaction.

Draw the structure for each of the reactants in the reaction: butanoic acid + 1-ethanol $\rightarrow \mathrm{X}+\mathrm{H}_{2} \mathrm{O}$ and circle the atoms to be removed to make water. Then identify, draw and name " X ".

Polymers are organic compounds made up of \qquad of smaller units covalently bonded together.

The formation of these larger polymer molecules is called \qquad _.

- Each individual unit of a polymer is called a \qquad . Naturally occurring polymers include \qquad
\qquad and \qquad .
A) Addition Polymerization: Addition polymerization occurs to make SATURATED hydrocarbons. As unsaturated molecules join up, a long molecular chain is built up and the multiple bond is replaced with a single bond.

(n is a large number, generally >2000)

B) Condensation Polymerization

Condensation polymerization reactions result from the bonding of \qquad by removing
\qquad and joining up the monomers.

THIS IS THE BATMAN SYMBOL CREATED WITHIN CHEMBIO DRAW ULTRA.

H_{2}

IT'S THE ONLY THING TO EVER COME OUT OF ORGANIC CHEMISTRY THAT ISN'T RAW, UNFILTERED PAIN.

