CONCENTRATION - a measure of the amount of substance per unit volume

For solutions, there are several expressions of concentration

```
g/mL (Grams of Solute / 100 mL of solvent) As is found with the graph on Reference Table G
```

Use Reference Table T to obtain the formulas for each of the following:

Molarity $(M)$$\quad \frac{\text { Moles of Solute }}{\text { Liters of Solution }}$

To determine the molarity of a solution:

1) Determine the number of moles of solute (given mass \div G.F.M.)
2) Determine the volume of solution you have in liters ($1000 \mathrm{~mL}=1 \mathrm{~L}$)
3) Solve.

| Parts Per |
| :--- | :--- |
| Million $\quad=\frac{\text { Mass of Solute }}{\text { Mass of Solution }}$ |
| (ppm) |$\times 10^{6}$

To determine the ppm of a solution:

1) Determine the mass (g) of solute only
2) Determine the mass (g) of solution

- This is the solute + solvent together

3) Divide the two numbers, then multiply by 10^{6}.

Percent Composition $(\%)$$=\underline{\text { Mass of Part }} \times 100$

This formula is used for Percent Mass and Percent Volume problems.

1) Determine the mass (g) of solute only
2) Determine the mass of solution (g)

- This is the solute + solvent together

3) Divide the two numbers, then multiply by 100 .

Dilutions are commonly needed when you need to make weaker strength solutions from a concentrated, stock solution. Quite often acids and solutions are purchased at high molarity concentrations, and to make a lower molarity solution you need to dilute a given amount with water.

$$
\text { Dilutions }=\mathrm{M}_{1} \mathrm{~V}_{1}=\mathrm{M}_{2} \mathrm{~V}_{2}
$$

*as long as volume units are consistent on both sides, it can be mL or L

You will most commonly use this formula to determine what amount of the concentrated solution (example: 18 M HCl) you will need to make a more dilute solution (example: 500 mL at 6M)
$\mathrm{M}_{1}=$ Molarity of the concentrated soln.
$\mathrm{V}_{1}=$ volume of concentrated soln.
$\mathrm{M}_{2}=$ Molarity of the desired weaker soln.
$\mathrm{V}_{2}=$ volume of the desired weaker soln.

Concentration Problems: Determine the formula necessary for each problem, show work necessary, and then solve for an answer with the correct number of significant figures.

1. Determine the molarity of $500 . \mathrm{mL}$ of a solution with 0.35 mol of dissolved solute.
2. A 200. mL sample of a solution contains 4.01 g of NaOH . What is its molarity?
3. How many grams of KNO_{3} are needed to prepare 250.0 mL of a 2.0 M solution?
4. How many moles of MgSO_{4} are contained in $50 . \mathrm{mL}$ of a 3.0 M solution?
5. How many parts per million of sulfur dioxide are there in a solution that contains 0.065 g of sulfur dioxide in $5,000 \mathrm{~mL}$ of water? (Assume density of water is $1 \mathrm{~g} / \mathrm{mL}$)
6. If 0.0020 g of PbCl_{2} are dissolved in 2.00 L of water, how many parts per million are dissolved?
7. A solution is prepared by mixing 20.0 g of NaNO_{3} with 100.0 mL of water. What is the percentage mass of the solution? (Assume density of water is $1 \mathrm{~g} / \mathrm{mL}$)
8. A $250 . \mathrm{mL}$ sample of air at STP contains approximately 52.5 mL of $\mathrm{O}_{2}(\mathrm{~g})$. What is the percentage of oxygen in air?
9. A polar solvent is prepared by mixing 27.5 mL of propanone with 222.5 mL of water. What is the percentage by volume of propanone in the mixture?
10. A 38.0% alcohol solution is made by dissolving 19.0 mL of alcohol in water. What was the volume of water used?
11. A 21.3% solution is prepared with KI and mixed in water. The mass of the total solution is 160 . grams. What is the amount of KI solute that was dissolved in the water?
12. How many milliliters of a $12.0 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ stock solution would need to be obtained to make 500 . mL of a $1.25 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ solution? \qquad How many milliliters of water would be needed? \qquad
13. If $100 . \mathrm{mL}$ of water is added to $250 . \mathrm{mL}$ of 6.0 M NaOH solution until the final volume of $350 . \mathrm{mL}$, what will be the molarity of the diluted solution?
