Use Reference Table I to answer the following questions.

What occurs during this reaction?

- 1) Energy is absorbed as bonds are formed.
- 2) Energy is absorbed as bonds are broken.
- 3) Energy is released as bonds are formed.
- 4) Energy is released as bonds are broken.
- 2) Given the equation: $I+I \rightarrow I_2 + 35 \ kJ$ This equation shows that the formation of an iodine molecule is an
 - 1) exothermic process in which energy is absorbed
 - 2) exothermic process in which energy is released
 - 3) endothermic process in which energy is absorbed
 - 4) endothermic process in which energy is released
- 3) For which compound is the process of dissolving in water exothermic?

1) NaCl	3) NH4Cl
2) NaOH	4) NH4NO3

- 4) Which balanced equation represents an endothermic reaction?
 - 1) $C(s) + O_2(g) \rightarrow CO_2(g)$
 - 2) CH₄(g) + 2O₂(g) \rightarrow CO₂(g) + 2H₂O(ℓ)
 - 3) $N_2(g) + 3H_2(g) \rightarrow 2NH_3(g)$
 - 4) $N_2(g) + O_2(g) \rightarrow 2NO(g)$
- 5) In what type of reaction do the products of the reaction always possess more potential energy than the reactants?
 - 1) endothermic 3) spontaneous
 - 2) exothermic 4) redox
 - 6) According to Reference Table I, which compound is formed from its elements during an exothermic reaction?
 - 1) HI(g) 3) NO(g)
 - 2) CO₂(g) 4) NO₂(g)

- 7) Given the balanced equation representing a reaction:

 $CH_4(g) + 2O_2(g) \rightarrow 2H_2O(g) + CO_2(g) +$ heat

Which statement is true about energy in this reaction?

- 1) The reaction is exothermic because it releases heat.
- 2) The reaction is exothermic because it absorbs heat.
- 3) The reaction is endothermic because it releases heat.
- 4) The reaction is endothermic because it absorbs heat.
- 8) Given the reaction:
 - $A + B \leftrightarrow C + D + \text{heat}$

Which statement best describes this reaction?

- 1) The forward reaction is exothermic, and the reverse reaction is always exothermic.
- 2) The forward reaction is exothermic, and the reverse reaction is always endothermic.
- The forward reaction is exothermic, and the reverse reaction can be either exothermic or endothermic.
- 4) The forward reaction is endothermic, and the reverse reaction can be either endothermic or exothermic.
- 9) Which expression represents the heat of reaction for a chemical change in terms of potential energy, *PE*?
 - 1) $(PE_{\text{products}}) + (PE_{\text{reactants}})$
 - 2) $(PE_{\text{products}}) (PE_{\text{reactants}})$
 - 3) $(PE_{\text{products}}) \times (PE_{\text{reactants}})$
 - 4) $(PE_{\text{products}}) \div (PE_{\text{reactants}})$

10) Given the balanced equation representing a reaction at 101.3 kPa and 298 K:	13) Given the reaction:
$N_2(g) + 3H_2(g) \rightarrow 2NH_3(g) + 91.8 \text{ kJ}$ Which statement is true about this reaction?	2 H ₂ (g) + O ₂ (g) \rightarrow 2 H ₂ O(ℓ) + 571.6 kJ What is the approximate ΔH for the formation of 1 mole of H ₂ O(ℓ)?
 It is exothermic and △H <i>equals</i> -91.8 kJ. It is exothermic and △H <i>equals</i> +91.8 kJ. 	1) -285.8 kJ 3) -571.6 kJ 2) +285.8 kJ 4) +571.6 kJ
 3) It is endothermic and <i>△H</i> equals -91.8 kJ. 4) It is endothermic and <i>△H</i> equals +91.8 kJ. 	14) According to Reference Table I, when 2 moles of H ₂ O(g) are formed from its elements,
 11) Which reaction releases the greatest amount of energy per 2 moles of product? 1) 2CO(g) + O₂(g) → 2CO₂(g) 2) 4Al(s) + 3O₂(g) → 2Al₂O₃(s) 3) 2H₂(g) + O₂(g) → 2H₂O(g) 4) N₂(g) + 3H₂(g) → 2NH₃(g) 	 484 kJ of heat is absorbed 484 kJ of heat is released 242 kJ of heat is absorbed 242 kJ of heat is released 15) Given the reaction: CH4(g) + 2 O₂(g) → 2 H₂O(g) + CO₂(g) What is the overall result when CH4(g) burns according to this reaction? Energy is absorbed and Δ<i>H</i> is negative. Energy is released and Δ<i>H</i> is negative. Energy is released and Δ<i>H</i> is positive. Energy is released and Δ<i>H</i> is positive.
12) Given the balanced equation: $4Fe(s) + 3O_2(g) \rightarrow 2Fe2O_3(s) + 1640 \text{ kJ}$	
Which phrase best describes this reaction? 1) endothermic with $\Delta H = +1640$ kJ 2) endothermic with $\Delta H = -1640$ kJ 3) exothermic with $\Delta H = +1640$ kJ 4) exothermic with $\Delta H = -1640$ kJ	