1. Which equation shows conservation of atoms?
A) $\mathrm{H}_{2}+\mathrm{O}_{2} \rightarrow \mathrm{H}_{2} \mathrm{O}$
B) $\mathrm{H}_{2}+\mathrm{O}_{2} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}$
C) $2 \mathrm{H}_{2}+\mathrm{O}_{2} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}$
D) $2 \mathrm{H}_{2}+2 \mathrm{O}_{2} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}$
2. Which equation shows a conservation of mass?
A) $\mathrm{Na}+\mathrm{Cl}_{2} \rightarrow \mathrm{NaCl}$
B) $\mathrm{Al}+\mathrm{Br}_{2} \rightarrow \mathrm{AlBr}_{3}$
C) $\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{2}+\mathrm{O}_{2}$
D) $\mathrm{PCl}_{5} \rightarrow \mathrm{PCl}_{3}+\mathrm{Cl}_{2}$
3. Given the unbalanced equation:

$$
-\mathrm{Al}+\ldots \mathrm{CuSO}_{4} \rightarrow \ldots \mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}+\ldots \mathrm{Cu}
$$ When the equation is balanced using the smallest whole-number coefficients, what is the coefficient of Al ?

A) 1
B) 2
C) 3
D) 4
4. Given the unbalanced equation:
$\mathrm{Fe}_{2} \mathrm{O}_{3}+\ldots \mathrm{CO} \rightarrow \underset{\mathrm{Ce}}{ }+\ldots \mathrm{CO}_{2}$
When the equation is correctly balanced using the smallest whole-number coefficients, what is the coefficient of CO ?
A) 1
B) 2
C) 3
D) 4
5. If an equation is balanced properly, both sides of the equation must have the same number of
A) atoms
B) coefficients
C) molecules
D) moles of molecules
6. Given the unbalanced equation:

$$
\ldots \mathrm{Mg}\left(\mathrm{ClO}_{3}\right)_{2}(\mathrm{~s}) \rightarrow \ldots \mathrm{MgCl}_{2}(\mathrm{~s})+\ldots \mathrm{O}_{2}(\mathrm{~g})
$$

What is the coefficient of O_{2} when the equation is balanced correctly using the smallest whole number coefficients?
A) 1
B) 2
C) 3
D) 4
7. Given the unbalanced equation:

$$
\mathrm{CaSO}_{4}+\ldots \mathrm{AlCl}_{3} \rightarrow \ldots \mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}+\ldots \mathrm{CaCl}_{2}
$$

What is the coefficient of $\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}$ when the equation is completely balanced using the smallest whole-number coefficients?
A) 1
B) 2
C) 3
D) 4
8. Given the incomplete equation:
$4 \mathrm{Fe}+3 \mathrm{O}_{2} \rightarrow 2 \mathrm{X}$
Which compound is represented by X ?
A) FeO
B) $\mathrm{Fe}_{2} \mathrm{O}_{3}$
C) $\mathrm{Fe}_{3} \mathrm{O}_{2}$
D) $\mathrm{Fe}_{3} \mathrm{O}_{4}$
9. Given the balanced equation:
$X+\mathrm{Cl}_{2} \rightarrow \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Cl}+\mathrm{HCl}$
Which molecule is represented by X ?
A) $\mathrm{C}_{2} \mathrm{H}_{4}$
B) $\mathrm{C}_{2} \mathrm{H}_{6}$
C) $\mathrm{C}_{3} \mathrm{H}_{6}$
D) $\mathrm{C}_{3} \mathrm{H}_{8}$
10. Given the incomplete equation:

$$
2 \mathrm{~N}_{2} \mathrm{O} 5(\mathrm{~g}) \rightarrow
$$

Which set of products completes and balances the incomplete equation?
A) $2 \mathrm{~N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g})$
B) $2 \mathrm{~N}_{2}(\mathrm{~g})+2 \mathrm{O}_{2}(\mathrm{~g})$
C) $4 \mathrm{NO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})$
D) $4 \mathrm{NO}(\mathrm{g})+\mathrm{SO}_{2}(\mathrm{~g})$
11. Given the balanced equation:

$$
2 \mathrm{Na}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{X}+\mathrm{H}_{2}
$$

What is the correct formula for the product represented by the letter X ?
A) NaO
B) $\mathrm{Na}_{2} \mathrm{O}$
C) NaOH
D) $\mathrm{Na}_{2} \mathrm{OH}$
12. Given the balanced equations representing two chemical reactions:
$\mathrm{Cl}_{2}+2 \mathrm{NaBr} \rightarrow 2 \mathrm{NaCl}+\mathrm{Br}_{2}$
$2 \mathrm{NaCl} \rightarrow 2 \mathrm{Na}+\mathrm{Cl}_{2}$

Which type of chemical reactions are represented by these equations?
A) single replacement and decomposition
B) single replacement and double replacement
C) synthesis and decomposition
D) synthesis and double replacement
13. Which balanced equation represents a single-replacement reaction?
A) $\mathrm{Mg}+2 \mathrm{AgNO}_{3} \rightarrow \mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2}+2 \mathrm{Ag}$
B) $2 \mathrm{Mg}+\mathrm{O}_{2} \rightarrow 2 \mathrm{MgO}$
C) $\mathrm{MgCO}_{3} \rightarrow \mathrm{MgO}+\mathrm{CO}_{2}$
D) $\mathrm{MgCl}_{2}+2 \mathrm{AgNO}_{3} \rightarrow 2 \mathrm{AgCl}+\mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2}$
14. Given the balanced equation representing a reaction:
$4 \mathrm{Al}(\mathrm{s})+3 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{Al}_{2} \mathrm{O}_{3}(\mathrm{~s})$
Which type of chemical reaction is represented by this equation?
A) double replacement
B) single replacement
C) substitution
D) synthesis
15. Given the balanced equation:
$\mathrm{AgNO}_{3}(\mathrm{aq})+\mathrm{NaCl}(\mathrm{aq}) \rightarrow \mathrm{NaNO}_{3}(\mathrm{aq})+$ $\mathrm{AgCl}(\mathrm{s})$

This reaction is classified as
A) synthesis
B) decomposition
C) single replacement
D) double replacement
16. $\quad \mathrm{F}_{2}(\mathrm{~g})+\mathrm{CaBr}_{2}(\mathrm{~g})=\mathrm{CaF}_{2}(\mathrm{~g})+\mathrm{Br}_{2}(\mathrm{~g})$

What type of reaction is shown above?
A) synthesis
B) decomposition
C) single replacement
D) double replacement
17. According to Reference Table J, which of these metals will react most readily with 1.0 M HCl to produce $\mathrm{H}_{2}(\mathrm{~g})$?
A) Ca
B) K
C) Mg
D) Zn
18. Referring to Reference Table J, which reaction will not occur under standard conditions?
A) $\mathrm{Sn}(\mathrm{s})+2 \mathrm{HCl}(\mathrm{aq}) \rightarrow \mathrm{SnCl}_{2}(\mathrm{ag})+\mathrm{H}_{2}(\mathrm{~g})$
B) $\mathrm{Cu}(\mathrm{s})+2 \mathrm{HCl}(\mathrm{aq}) \rightarrow \mathrm{CuCl}_{2}(\mathrm{aq})+\mathrm{H}_{2}(\mathrm{~g})$
C) $\mathrm{Ba}(\mathrm{s})+2 \mathrm{HCl}(\mathrm{aq}) \rightarrow \mathrm{BaCl}_{2}(\mathrm{aq})+\mathrm{H}_{2}(\mathrm{~g})$
D) $\mathrm{Mg}(\mathrm{s})+2 \mathrm{HCl}(\mathrm{aq}) \rightarrow \mathrm{MgCl}_{2}(\mathrm{aq})+\mathrm{H}_{2}(\mathrm{~g})$
19. Based on Reference Table J, which of the following elements will replace Pb from $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)$ 2(aq)?
A) $\mathrm{Mg}(\mathrm{s})$
B) $\mathrm{Au}(\mathrm{s})$
C) $\mathrm{Cu}(\mathrm{s})$
D) $\mathrm{Ag}(\mathrm{s})$
20. According to Reference Table J, which pair will react spontaneously at 298 K ?
A) $\mathrm{Cu}+\mathrm{H}_{2} \mathrm{O}$
B) $\mathrm{Ag}+\mathrm{H}_{2} \mathrm{O}$
C) $\mathrm{Ca}+\mathrm{H}_{2} \mathrm{O}$
D) $\mathrm{Au}+\mathrm{H}_{2} \mathrm{O}$

