Name	Ideal Gas Law Problems
Use the ideal gas law equation (PV = nRT , where $R = 0.0821$ atm credit.	n·L/K·mole) to solve the following problems. Show all work for full
1) If I have 4.00 moles of a gas at a pressure of 5.60 atm and a	volume of 12.0 liters, what is the temperature?
2) If I have an unknown quantity of gas at a pressure of 1.20 at many moles of gas do I have?	rm, a volume of 31.0 liters, and a temperature of 87.0°C, how
3) If I contain 3.00 moles of gas in a container with a volume of inside the container?	f 60.0 liters and at a temperature of 400. K, what is the pressure
4) If I have 7.70 moles of gas at a pressure of 91.2 kPa and at a the gas is in?	temperature of 56.0°C, what is the volume of the container that
5) How many moles of Helium gas will occupy a volume of 52.0	D L at STP?
6) What pressure will 100.00 grams of oxygen exert in a 22.0 L	container at 300. K?
Extra Credit: Calculate the universal gas constant (R) for the units $\underline{\text{kpa}}$, $\underline{\text{mL}}$, $\underline{\text{K}}$ 22.4 L at STP.	and mole, knowing that 1 mole of ideal gas occupies a volume of