Name \qquad

Use the ideal gas law equation ($\mathrm{PV}=\mathrm{nRT}$, where $\mathrm{R}=0.0821 \mathrm{~atm} \cdot \mathrm{~L} / \mathrm{K} \cdot \mathrm{mole}$) to solve the following problems. Show all work for full credit.

1) If I have 4.00 moles of a gas at a pressure of 5.60 atm and a volume of 12.0 liters, what is the temperature?
2) If I have an unknown quantity of gas at a pressure of 1.20 atm , a volume of 31.0 liters, and a temperature of $87.0^{\circ} \mathrm{C}$, how many moles of gas do I have?
3) If I contain 3.00 moles of gas in a container with a volume of 60.0 liters and at a temperature of 400 . K, what is the pressure inside the container?
4) If I have 7.70 moles of gas at a pressure of 91.2 kPa and at a temperature of $56.0^{\circ} \mathrm{C}$, what is the volume of the container that the gas is in?
5) How many moles of Helium gas will occupy a volume of 52.0 L at STP?
6) What pressure will 100.00 grams of oxygen exert in a 22.0 L container at 300 . K ?

Extra Credit:
Calculate the universal gas constant (R) for the units $\mathrm{kpa}, \underline{\mathrm{mL}}, \underline{K}$ and mole, knowing that 1 mole of ideal gas occupies a volume of 22.4 L at STP.

