Name	
Date	

Investigating the pH Scale

Essential Question:

How does the pH scale qualitatively relate to acids, bases, hydronium ion and hydroxide ion concentrations?

1. Go to phet.colorado.edu and click on Play with Simulations. On the left hand side of the screen pick Chemistry and then find the simulation that says "pH Scale." (Don't choose pH Scale: Basics)

Macro Investigation

- 2. Click on the "Macro" box.
- 3. There is a pH scale on the left hand side of the screen. Label the pH scale below as acidic and basic.

- 4. Investigate the pH of each of the following substances.
 - a) Drag the pH sensor into the solution to see the pH reading.
 - b) Record the pH of the substance and whether the substance falls into the acid or base end of the pH scale.
 - c) To change the substance simply select from the drop down menu.

Substance	рН	acid/base
Drain cleaner		
Hand soap		
Blood		
Spit		
Milk		
Chicken Soup		
Coffee		
Orange Juice		
Soda Pop		
Vomit		
Battery Acid		

b) What pH	values cor	respond to base	25?			
Micro Investigation 16. Navigate to the		box.				
7. The same sub additional inform		•				r this tab gives you the substance.
3. Fill in the cha	rt below fo	er each substan	ce listed.			
Substance	рН	Acid or Base?	Cond H₂O	entration (mo H₃O⁺	II/L)	Particulate Level View More H ₃ O ⁺ or OH ⁻ ?
Drain Cleaner		buse.	H ₂ O	1130	- On	More rise of err.
Hand Soap						
Coffee						
Vomit						
Battery Acid						
Blood						
9. Using the info	ormation fr	om the chart ai	nd simulation ar	swer the follo	wing questions.	
·		es 0, what happ				
b) As the pl	H approach	es 0, what happ	ens to the con o	entration of (OH ⁻ ions?	
c) As a solu	tion becom	es more acidic	what is the rel	ationship betw	een H₃O⁺ and C	PH- ions? (<, >, or =)

H₃O⁺____OH⁻

5. Using the information from the chart and simulation answer the following questions.

d) As the pH approaches 14, what happens to the concentration of H ₃ O ⁺ ions?	

e) As the pH approaches 14, what happens to the concentration of OH ions?

f) As a solution becomes **more basic** what is the relationship between H_3O^+ and OH^- ions? (<, >, or =)

10. a) Can you predict the relationship between H_3O^+ and OH^- ions in a solution with a pH of 7?

b) Would you classify this solution as an acid or base? Explain your reasoning.

Determining pH and pOH

$$pH = -\log[H^{+}]$$
 or $pOH = -\log[OH^{-}]$

Examples: A solution with a $[H_3O^+]$ of 1 x 10^{-6} has a pH of ______

A solution with a $[H^{\dagger}]$ of 1 \times 10⁻¹¹ has a pH of _____ and is _____.

A solution with a [H+] of 1×10^{-3} has a pH of _____ and is _____

A change of 1 in pH means there has been a ____x change in the concentration of H ions

A change in pH from 3 to 4 means there are $\underline{\hspace{1cm}}$ times $\underline{\hspace{1cm}}$ [H †] ions in solution.

A change in pH from 10 to 8 means there are $_$ times $_$ [H †] ions in solution.

A change in pH from 1 to 4 means there are $___$ times $___$ [H †] ions in solution.

$$pOH + pH = 14$$
 and $[H^+][OH^-] = 1.0 \times 10^{-14}$

1. Determine the following values:

1 × 10 ⁻¹² M	If the [OH-]= 1×10^{-2} M for a solution, calculate the [H $_3$ O+]
	_ a. if the $[H_3O^+]$ = 1 × 10 ⁻⁶ M for a solution, calculate the $[OH^-]$
	_ b. if the [H ₃ O ⁺] = 1×10^{-9} M for a solution, calculate the [OH ⁻]
	_ c. if the $[OH^{-}]$ = 1 x 10^{-12} M for a solution, calculate the $[H_{3}O^{+}]$
	_ d. if the $[OH^{-}] = 1 \times 10^{-3}$ M for a solution, calculate the $[H_3O^{+}]$
	_ e. The [H₃O⁺] and [OH⁻] are(directly, inversely, not) proportions in any system involving water
	1 × 10 ⁻¹² M

2. Determine the following values

