1) Isotopes are atoms that have the same number of protons but a different
2) number of electrons
3) number of neutrons
4) atomic number
5) nuclear charge
6) Isotopes of an element must have different
7) atomic numbers
8) mass numbers
9) numbers of protons
10) numbers of electrons
11) All isotopes of a given element must have the same
12) atomic mass
13) atomic number
14) mass number
15) number of neutrons
16) Atoms of every isotope of calcium have the same
17) atomic mass
18) atomic number
19) number of neutrons
20) number of nucleons
21) Atoms of ${ }^{16} \mathrm{O},{ }^{17} \mathrm{O}$, and ${ }^{18} \mathrm{O}$ have the same number of
22) neutrons, but a different number of protons
23) protons, but a different number of neutrons
24) protons, but a different number of electrons
25) electrons, but a different number of protons
26) Which species contains only 12 nucleons (protons plus neutrons) in the nucleus?
27) ${ }_{6}^{12} \mathrm{C}$
28) ${ }_{24}^{22} \mathrm{Cr}$
29) ${ }_{12}^{24} \mathrm{Mg}$
30) ${ }_{11}^{23} \mathrm{Na}$
31) What is the symbol for an atom containing 20 protons and 22 neutrons?
32) ${ }^{42} 20 \mathrm{Ca}$
33) ${ }^{40}{ }_{20} \mathrm{Ca}$
34) ${ }^{42} 22 \mathrm{Ti}$
35) ${ }^{40} 22 \mathrm{Ti}$
36) Which nucleus contains the greatest number of neutrons?
37) ${ }_{16}^{31} \mathrm{~S}$
38) ${ }_{16}^{32} \mathrm{~S}$
39) ${ }_{15}^{31} \mathrm{P}$
40) ${ }_{15}^{32} \mathrm{P}$
\qquad 9) In which pair of atoms do both nuclei contain the same number of neutrons?
41) ${ }_{3}^{7} \mathrm{Li}$ and ${ }_{4}^{9} \mathrm{Be}$
42) ${ }_{19}^{40} \mathrm{~K}$ and ${ }_{17}^{40} \mathrm{Cl}$
43) ${ }_{20}^{40} \mathrm{Ca}$ and ${ }_{18}^{38} \mathrm{Ar}$
44) ${ }_{7}^{14} \mathrm{~N}$ and ${ }_{8}^{16} \mathrm{O}$
45) Which symbols represent atoms that are isotopes of each other?
46) ${ }^{14} \mathrm{C}$ and ${ }^{14} \mathrm{~N}$
47) ${ }^{16} \mathrm{O}$ and ${ }^{18} \mathrm{O}$
48) ${ }^{131} \mathrm{I}$ and ${ }^{131} \mathrm{I}$
49) ${ }^{222} \mathrm{Rn}$ and ${ }^{222} \mathrm{Ra}$
50) Element X has two isotopes. If 72.0% of the element has an isotopic mass of 84.9 atomic mass units, and 28.0% of the element has an isotopic mass of 87.0 atomic mass units, the average atomic mass of element X is numerically equal to
51) $(72.0+84.9) \times(28.0+87.0)$
52) $(72.0-84.9) \times(28.0+87.0)$
53) $\frac{(72.0 \times 84.9)}{100}+\frac{(28.0 \times 87.0)}{100}$
54) $(72.0 \times 84.9)+(28.0 \times 87.0)$
55) An element occurs as a mixture of isotopes. The atomic mass of the element is based upon
56) the masses of the individual isotopes, only
57) the relative abundances of the isotopes, only
58) both the masses and the relative abundances of the individual isotopes
59) neither the masses nor the relative abundances of the individual isotopes
60) The atomic mass of an element is defined as the weighted average mass of that element's
61) most abundant isotope
62) least abundant isotope
63) naturally occurring isotopes
64) radioactive isotopes
65) If 75.0% of the isotopes of an element have a mass of 35.0 amu and 25.0% of the isotopes have a mass of 37.0 amu , what is the atomic mass of the element?
66) 35.0 amu
67) 36.0 amu
68) 35.5 amu
69) 37.0 amu
