\qquad
___1. Chemical reactions require activation energy and are:

1. Either exothermic or endothermic
2. Neither exothermic nor endothermic
3. Exothermic, only
4. Endothermic, only
5. When a catalyst lowers the activation energy of a reaction, the rate of the reaction:
6. Decreases
7. Increases
8. Remains the same
9. When a catalyst is added to a chemical reaction, what will remain constant?
10. $\triangle \mathrm{H}$ of the reaction
11. Potential energy of the activated complex
12. Rate of the reaction
13. Activation energy of the forward reaction
14. Consider the reaction: $\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}+$ ENERGY $\rightarrow \mathrm{H}_{2(\mathrm{~g})}+1 / 2 \mathrm{O}_{(\mathrm{g})}$

Which phrase best describes this reaction?

1. Exothermic, releasing energy
2. Exothermic, absorbing energy
3. Endothermic, releasing energy
4. Endothermic, absorbing energy
___5. As products are formed in the reaction: $\mathrm{NH}_{4} \mathrm{Cl}_{(\mathrm{s})}+14.78 \mathrm{~kJ} \rightarrow \mathrm{NH}_{4}{ }^{+}($aq $)+\mathrm{Cl}^{-}($aq $)$, the entropy of the system,
5. Decreases and heat is absorbed 3. Increases and heat is absorbed
6. Decreases and heat is released
7. Increases and heat is released
8. Which set of characteristics is associated with a spontaneous reaction at all temperatures?
9. $\triangle \mathrm{H}$ positive, $\triangle \mathrm{S}$ negative
10. $\triangle H$ positive, $\triangle S$ positive
11. $\triangle H$ negative, $\triangle S$ negative
12. $\triangle H$ negative, $\triangle S$ positive

Base your answers to question 7 through 8 on the equation below.

$$
\mathrm{A}+\mathrm{B} \leftrightarrows \mathrm{AB} \quad \triangle \mathrm{H}=+153.2 \mathrm{~kJ}
$$

\qquad 7. The enthalpy change for the reverse reaction is:

1. +153.2 kJ
2. -153.2 kJ
3. +306.4 kJ
4. -304.6 kJ
5. The forward reaction is:
6. Exothermic
7. Endothermic
8. Isothermic
9. Incomplete
\qquad 9. Based on Reference Table I, which compound forms from its elements spontaneously?
10. $\mathrm{C}_{2} \mathrm{H}_{4}(\mathrm{~g})$
11. $\mathrm{C}_{2} \mathrm{H}_{6}(\mathrm{~g})$
12. $\mathrm{NO}_{2(\mathrm{~g})}$
13. $\mathrm{NO}_{(\mathrm{g})}$
___10. Based on Reference Table I, which reaction occurs spontaneously?
14. $\mathrm{N}_{2(\mathrm{~g})}+2 \mathrm{O}_{2(\mathrm{~g})} \rightarrow 2 \mathrm{NO}_{2(\mathrm{~g})}$
15. $\mathrm{N}_{2(\mathrm{~g})}+\mathrm{O}_{2(\mathrm{~g})} \rightarrow 2 \mathrm{NO}_{(\mathrm{g})}$
16. $2 \mathrm{C}_{(\mathrm{s})}+3 \mathrm{H}_{2(\mathrm{~g})} \rightarrow \mathrm{C}_{2} \mathrm{H}_{6}(\mathrm{~g})$
17. $2 \mathrm{C}+2 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow \mathrm{C}_{2} \mathrm{H}_{4}(\mathrm{~g})$
18. Given the reaction for the Haber process: $\mathrm{N}_{2}+3 \mathrm{H}_{2} \Leftrightarrow 2 \mathrm{NH}_{3}+$ heat The temperature of the reaction is raised in order to:
19. increase the percent yield(amount) of nitrogen 3. affect the forward reaction rate most
20. increase the rate of formation of ammonia
21. affect the reverse reaction least
22. In a reversible reaction, chemical equilibrium is attained when the:
23. rate of the forward reaction is greater than the rate of the reverse reaction
24. rate of the reverse reaction is greater than the rate of the forward reaction
25. concentration of the reactants reaches zero
26. concentration of the products remains constant
27. In a reversible chemical reaction, which factors must be equal when the reaction is at equilibrium?
28. rate at which reactants are formed and rate at which products are formed
29. concentration of reactants and concentration of products
30. potential energy of reactants and potential energy of products
31. activation energy of reactants and activation energy of products.
32. After being ignited in a Bunsen burner flame, a piece of magnesium ribbon burns brightly, giving off heat and light. In this situation, the Bunsen burner flame provides:
33. ionization energy
34. heat of vaporization
35. activation energy
36. heat of reaction
37. Given the solution at equilibrium: $\mathrm{CaSO}_{4}(\mathrm{~S}) \Leftrightarrow \mathrm{Ca}^{2+}{ }_{(\mathrm{aq})}+\mathrm{SO}_{4}{ }^{2-}$ (aq)

When $\mathrm{Na}_{2} \mathrm{SO}_{4}$ is added to the system, how will the equilibrium shift?

1. The amount of CaSO_{4} will decrease, and the concentration of $\mathrm{Ca}^{2+}{ }_{(\text {aq })}$ will decrease
2. The amount of CaSO_{4} will decrease, and the concentration of Ca^{2+} (aq) will increase
3. The amount of CaSO_{4} will increase, and the concentration of $\mathrm{Ca}^{2+}(\mathrm{aq})$ will decrease
4. The amount of CaSO_{4} will increase, and the concentration of $\mathrm{Ca}^{2+}{ }_{(\mathrm{aq})}$ will increase
5. Given the reaction at equilibrium: $2 \mathrm{H}_{2(\mathrm{~g})}+\mathrm{O}_{2(\mathrm{~g})} \leftrightarrow 2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}+$ HEAT.

Which concentration changes occur when the temperature of the system is increased:

1. The $\left[\mathrm{H}_{2}\right]$ decreases and the $\left[\mathrm{O}_{2}\right]$ decreases
2. The $\left[\mathrm{H}_{2}\right]$ increases and the $\left[\mathrm{O}_{2}\right]$ decreases
3. The $\left[\mathrm{H}_{2}\right]$ decreases and the $\left[\mathrm{O}_{2}\right]$ increases
4. The $\left[\mathrm{H}_{2}\right]$ increases and the $\left[\mathrm{O}_{2}\right]$ increases
5. In the equilibrium system: $2 \mathrm{SO}_{2(\mathrm{~g})}+\mathrm{O}_{2(\mathrm{~g})} \leftrightarrows 2 \mathrm{SO}_{3(\mathrm{~g})}+\mathrm{HEAT}$, the concentration of $\mathrm{SO}_{3(\mathrm{~g})}$ may be increased by:
6. Increasing the pressure
7. Increasing the temperature
8. Decreasing the concentration of $\mathrm{SO}_{2(\mathrm{~g})}$
9. Decreasing the concentration of $\mathrm{O}_{2(\mathrm{~g})}$
10. Given the reaction at equilibrium: $\mathrm{SO}_{2(\mathrm{~g})}+\mathrm{NO}_{2(\mathrm{~g})} \leftrightarrow \mathrm{SO}_{3(\mathrm{~g})}+\mathrm{NO}_{(\mathrm{g})}$.

The amount of $\mathrm{SO}_{3(\mathrm{~g})}$ will increase if the concentration of:

1. $\mathrm{NO}_{(\mathrm{g})}$ increases
2. $\mathrm{SO}_{2(\mathrm{~g})}$ increases
3. $\mathrm{NO}_{2(\mathrm{~g})}$ decreases
4. $\mathrm{SO}_{2(\mathrm{~g})}$ decreases
5. Given the reaction at equilibrium: $2 \mathrm{CO}_{(\mathrm{g})}+\mathrm{O}_{2(\mathrm{~g})} \Leftrightarrow 2 \mathrm{CO}_{2(\mathrm{~g})}$

When the reaction is subjected to stress, a change will occur in the concentration of:

1. reactants, only
2. both reactants and products
3. products, only
4. neither reactants nor products
5. Given the reaction: $4 \mathrm{HCl}_{(\mathrm{g})}+\mathrm{O}_{2(\mathrm{~g})} \Leftrightarrow 2 \mathrm{Cl}_{(\mathrm{g})}+2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}$

If the pressure on the system is increased, the concentration of $\mathrm{Cl}_{2(\mathrm{~g})}$ will:

1. decrease
2. increase
3. remain the same
4. Use the potential energy diagram below to answer the following questions.

a. The heat content of the reactants of the forward reaction is about \qquad kilojoules.
b. The heat content of the products of the forward reaction is about \qquad kilojoules.
c. The heat content of the activated complex of the forward reaction is about \qquad kilojoules.
d. The activation energy of the forward reaction is about \qquad kilojoules.
e. The heat of reaction $(\Delta \mathrm{H})$ of the forward reaction is about \qquad kilojoules.
f. The forward reaction is \qquad (endothermic or exothermic).
g. The heat content of the reactants of the reverse reaction is about \qquad kilojoules.
h. The heat content of the products of the reverse reaction is about \qquad kilojoules.
i. The heat content of the activated complex of the reverse reaction is about \qquad kilojoules.
j. The activation energy of the reverse reaction is about \qquad kilojoules.
k. The heat of reaction $(\Delta \mathrm{H})$ of the reverse reaction is about \qquad kilojoules.
l. The reverse reaction is \qquad (endothermic or exothermic).
5. Given the reaction: $\mathrm{N}_{2}(\mathrm{~g})+2 \mathrm{O}_{2}(\mathrm{~g})-->2 \mathrm{NO}_{2}(\mathrm{~g}) \quad \Delta \mathrm{H}=+66.4 \mathrm{~kJ}$
a) Rewrite the reaction to include the enthalpy value: \qquad
b) If 25.7 moles of $\mathrm{NO}_{2}(\mathrm{~g})$ are to be formed, how much heat energy is needed?
6. Determine the heat of reaction for the following using the Enthalpy Heats of Formation chart. $\mathrm{NaOH}(\mathrm{s})+\mathrm{HCl}(\mathrm{g})--->\mathrm{NaCl}(\mathrm{s})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
7. Given the overall reaction: $3 \mathrm{H}_{2}(\mathrm{~g})+2 \mathrm{C}(\mathrm{s})+1 / 2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}(\mathrm{l})$ determine $\Delta \mathrm{H}$ using the intermediate steps below.

$$
\begin{array}{ll}
\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}(\mathrm{l})+3 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{CO}_{2}(\mathrm{~g})+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) & \Delta \mathrm{H}=-875 . \mathrm{kJ} \\
\mathrm{C}(\mathrm{~s})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g}) & \Delta \mathrm{H}=-394.51 \mathrm{~kJ} \\
\mathrm{H}_{2}(\mathrm{~g})+1 / 2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) & \Delta \mathrm{H}=-285.8 \mathrm{~kJ}
\end{array}
$$

25. In this reaction: $\mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g})+$ heat $\leftrightarrow \mathrm{CO}(\mathrm{g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$ a. Is heat absorbed or released by the forward reaction? \qquad
b. In which direction (\leftarrow, \rightarrow or none) will the equilibrium shift if these changes are made?

CO is added \qquad
temperature is increased \qquad
CO_{2} is added \qquad temperature is decreased \qquad
26. In this reaction: $2 \mathrm{NO}(\mathrm{g})+\mathrm{H}_{2}(\mathrm{~g}) \leftrightarrow \mathrm{N}_{2} \mathrm{O}(\mathrm{g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g})+$ heat a. What will happen to the $\mathrm{H}_{2} \mathrm{O}$ concentration (inc., dec. or stay same) when equilibrium is reestablished after these stresses are applied?
temperature is increased \qquad a catalyst is added \qquad pressure is decreased \qquad

NO is added \qquad
$\mathrm{N}_{2} \mathrm{O}$ is removed \qquad

Answers		Answers		Answers	
1. 1		1. 1		1. 1	
		2. 2		2. 2	
3. 1		3. 1		3. 1	
4. 4		4. 4		4. 4	
5. 3		5. 3		5. 3	
6. 4		6. 4		6. 4	
7. 2		7. 2		7. 2	
8. 2		8. 2		8. 2	
9. 2		9. 2		9. 2	
10. 3		10. 3		10. 3	
11. 1		11. 1		11. 1	
12. 4		12. 4		12. 4	
13. 1		13.1		13. 1	
14. 2		14. 2		14. 2	
15. 3		15. 3		15. 3	
16. 4		16. 4		16. 4	
17. 1		17. 1		17. 1	
18. 2		18. 2		18. 2	
19.3		19.3		19.3	
20. 2		20. 2		20. 2	
21. a) 80		21. a) 80		21. a) 80	
b) 160		b) 160		b) 160	
c) 240		c) 240		c) 240	
d) 160		d) 160		d) 160	
e) +80		e) +80		e) +80	
f) endo		f) endo		f) endo	
g) 160		g) 160		g) 160	
h) 80		h) 80		h) 80	
i) 240		i) 240		i) 240	
j) 80		j) 80		j) 80	
k) -80		k) -80		k) -80	
l) exo		l) exo		1) exo	
22. a) $\mathrm{N}_{2}+\mathrm{O}_{2}+66$. b) -853.24 kJ	$\mathrm{J}-->2 \mathrm{NO}_{2}$	22. a) $\mathrm{N}_{2}+\mathrm{O}$ b) -853	$\mathrm{J}-->2 \mathrm{NO}_{2}$	22. a) $\mathrm{N}_{2}+\mathrm{O}_{2}+66$. b) -853.24 kJ	$\mathrm{J}-->2 \mathrm{NO}_{2}$
23. -986.3 kJ		23. -986.3 k		23. -986.3 kJ	
24. -771.41 kJ		24. -771.41		24. -771.41 kJ	
25. a) absorbed		25. a) absor		25. a) absorbed	
b) $¢$	t	b) t	\leqslant	b) \leftarrow	t
\rightarrow	none	\rightarrow	none	\rightarrow	none
\rightarrow	none	\rightarrow	none	\rightarrow	none
t		t		t	
26. dec	$\underline{\text { inc }}$	26. dec	$\underline{\text { inc }}$	26. dec	$\underline{\text { inc }}$
same dec	inc	same dec	inc	same dec	$\underline{\text { inc }}$

