Date				Nı	uclear Che	emistry Review
1. V	Which particle is e	mitted from a hydro	ogen-3 nucleus	when it under	goes radio	active decay?
($(1) \alpha^+$	(2) β–	2	(3) β+		(4) γ
2. V	What is the half-lif	e of a radioisotope	if 25.0 grams of	an original 20	00gram s	sample of the isotope
((1) 2.87 d	(2) 3.82 d	(3)	11.46 d	(4) 3	4.38 d
3. W	Which particle has 1) an alpha particl	the greatest mass? e (2) a beta pa	article	(3) a neutron		(4) a positron
4. # ((A beta particle ma (1) a ground-state (2) a stable nucleu	y be spontaneously electron s	emitted from (3) an exci (4) an unst	ted electron able nucleus		
5. T	The nucleus of a ra 1) absorb electron	dium-226 atom is u s (2) absorb prot	unstable, which ons (3) deca	causes the nuc y (4) or	eleus to sp kidize	ontaneously
6. A fl	An original sample niligrams of this o luorine-21?	of the radioisotope riginal sample rema	e fluorine-21 had ain unchanged a	d a mass of 80 fter 8.32 seco	.0 milligra nds. What	ams. Only 20.0 is the half-life of
((1) 1.04 s	(2) 2.08 s	(3) 4.16 s	(4)) 8.32 s	
7. G 2 V	Given the balanced $^{235}_{92}U + {}^{1}_{0}n \rightarrow {}^{142}_{5}$ Which particle is re-	l equation represent ${}_{6}Ba + {}^{91}{}_{36}Kr + 3X +$ epresented by X?	ting a nuclear re ⊦ energy	action:		
($(1)^{0}-1e$	$(2)^{-1}H$	(3) ${}^{4}_{2}$ He	(4) ¹ ₀ n	
8. A	A proton has a char (1) an alpha partic	rge that is opposite le (2) a r	the charge of neutron	(3) an elec	ctron	(4) a positron
9. A	An original sample	of K-40 has a mas	s of 25.00 gram Vhat is the half-	s. After 3.9 x	10 ⁹ years,	3.125 grams of the
(1	1) 1.3 x10 ⁹ y	(2) 2.6 x1	$0^9 y$ (3)	3.9 x10 ⁹ y	(4) 1	.2 x10 ¹⁰ y
10.	Which list of nucl penetrating power	lear emissions is arr ?	ranged in order	from the <i>least</i>	penetratin	ng power to the greates
()	1) alpha particle, b	peta particle, gamm	a ray			
(2) alpha particle, § 3) gamma ray, bet	a particle, alpha pa	rticle			
(4	4) beta particle, al	pha particle, gamm	a ray			
11.	Which two radiois	sotopes have the sa $(2)^{37}W$	me decay mode	?		
(. ('	1) ³⁷ Ca and ³³ Fe 2) 220 Fr and 60 Co	(3) ³⁷ K an (4) ⁹⁹ Te ar	10 K nd ¹⁹ Ne			
(4	<i>2)</i> 11 and CO	(¬) 10 di	114 110			
12.	Which nuclear en	nission has the grea (2) beta particle	test penetrating (3) game	power?	(4) n	ositron

13.	What is the decay	mode of ³⁷ K?					
	(1) α	(2) β–		(3) β+	(4) γ		
14.	What is the mass r (1) 1	number of an alp (2) 2	ha particle? (3) 0	(4)	4		
15.	Which list of radio (1) C-14, N-16 (2) Cs-137, Fi	bisotopes contain 6, P-32 -220, Tc-99	ns an alpha en (3) Kr (4) Pu	nitter, a beta emitter -85, Ne-19, Rn-222 -239, Th-232, U-23	, and a positron emitter? 8		
16.	 16. Which nuclear decay emission consists of (1) alpha particle (2) beta particle 			of energy, only? (3) gamma radiation (4) positron			
17.	Given the nuclear Which particle is $(1)^{4}$ He	equation: ${}^{253}_{99}E$ represented by λ	$s + X \rightarrow {}^{1}_{0}n +$ (3) ${}^{1}_{0}n$	$^{-256}_{101}$ Md (4)	0 ₊₁ e		
18.	Which group of n (1) alpha parti (2) gamma rac (3) positron, a (4) neutron, po	uclear emissions icle, beta particle diation, alpha pa lpha particle, ne ositron, alpha pa	s is listed in or e, gamma radi rticle, beta pa utron rticle	rder of increasing ch ation rticle	narge?		
19	Which notation of $(1)^{37}$ Ca and 4	f a radioisotope is ${}_{2}$ He (2) 235 U	correctly pair and $^{0}_{+1}e$	red with the notation (3) 16 N and 1 p	of its emission particle? (4) ³ H and ⁰ -1e		
20	 Positrons are spo (1) potassium 	ntaneously emitte -37 (2) radiu	ed from the nu um-226	clei of (3) nitrogen-16	(4) thorium-232		
21	. Which isotope w (1) ⁵³ Fe	ill spontaneously (2) ¹³⁷ C	decay and ends	mit particles with a (3) ¹⁹⁸ Au	charge of +2? (4) ²²⁰ Fr		
22	2. Which equation (1) ${}^{87}_{37}\text{Rb} \rightarrow 0$ (3) ${}^{27}_{13}\text{Al} + {}^{4}_{21}$	represents positr $P_{-1}e + {}^{87}_{38}Sr$ He $\rightarrow {}^{30}_{15}P + {}^{1}_{0}r$	$\begin{array}{c} \text{con decay?} \\ (2)^{227} \\ (4)^{11} \\ \end{array}$	$^{92}U \rightarrow ^{223}_{90}Th + ^{4}_{2}H$ $C \rightarrow ^{0}_{+1}e + ^{11}_{5}B$	le		
23	Which statement (1) It has a ma (2) It has a ma	t best describes g ass of 1 and a cha ass of 0 and a cha	gamma radiati arge of 1. arge of –1.	on? (3) It has a mass o (4) It has a mass o	f 0 and a charge of 0. f 4 and a charge of +2.		
24	 The nucleus of a (1) 27 protons (2) 27 protons 	n atom of cobalt and 31 neutrons and 32 neutrons	5-58 contains 5 5	(3) 59 protons and(4) 60 protons and	60 neutrons 60 neutrons		
25	5. The stability of a (1) number of (2) number of	an isotope is base neutrons, only protons, only	ed on its	(3) ratio of neutron(4) ratio of electron	ns to protons ns to protons		

26. Complete the following nuclear reactions, and label if they are <u>natural</u> or <u>artificial transmutation</u>.

- 27. Uranium-238, a solid, is a naturally radioactive element found in the earth's crust. As it decays, one of the products is Radon-222, which is a gas and is very radioactive.
 - a. Using Reference Table N, write the equation for the decay of $_{86}Rn^{222}$.

b. How many grams of a 10.0 gram sample of Rn-222 would remain after 11.469 days?

28. Determine the fraction of an original sample of K-42 that remains unchanged after 24.72 hours.

29. Given the nuclear equations: Equation 1: ²	$^{35}_{92}$ U + $^{1}_{0}$ n \rightarrow $^{142}_{56}$ Ba + $^{91}_{36}$ Kr + $^{31}_{0}$ n +X
Equation 2: ³	$_{1}H + _{1}^{2}H \rightarrow _{2}^{4}He + _{0}^{1}n + \underline{X}$
a. Name the nuclear reaction represent	ed by equation 1:
b. Name the nuclear reaction represente	ed by equation 2:
c. What does the "X" represent for bot	h of these nuclear equations?
d. Which equation is the nuclear reaction	on of the sun?
e. Which equation is the nuclear reaction	on used in power plants?