 Compared to a solution with a pH value of 7, a solution with a thousand times greater hydronium ion concentration has a pH value of 10 2) 7 3) 3 4) 4 Which change in the H⁺ ion concentration of an aqueous solution represents a <i>decrease</i> of one unit on the pH scale? a tenfold increase a tenfold decrease a hundredfold increase a hundredfold decrease The pH of a solution is 7. When acid is added to the solution, the hydronium ion concentration becomes 100 times greater. What is the pH of the new solution? 1 2) 5 3) 9 4) 14 When the pH of an aqueous solution is changed from 1 to 2, the concentration of hydronium ions in the solution is decreased by a factor of 2 decreased by a factor of 10 increased by a factor of 10 increased by a factor of 10 decreases 10 pH unit decreases 10 pH units increases by a factor of 3 increases by a factor of 3 increases by a factor of 3 increases by a factor of 3<td> 8. Which statement correctly describes a solution with a pH of 9? 1) It has a higher concentration of H₃O⁺ than OH⁻ and causes litmus to turn blue. 2) It has a higher concentration of OH⁻ than H₃O⁺ and causes litmus to turn blue. 3) It has a higher concentration of H₃O⁺ than OH⁻ and causes methyl orange to turn yellow. 4) It has a higher concentration of OH⁻ than H₃O⁺ and causes methyl orange to turn red. 9. Which of these pH numbers indicates the highest level of acidity? 1) 5 2) 8 3) 10 4) 12 10. Which of these 1 M solutions will have the highest pH? 1) NaOH 3) HCl 2) CH₃OH 4) NaCl 11. Which relationship is present in a solution tha has a pH of 7? 1) [H⁺] = [OH⁻] 2) [H⁺] > [OH⁻] 3) [H⁺] < [OH⁻] 4) [H⁺] + [OH⁻] = 7 12. Which could be the pH of a solution whose H O⁺ ion concentration is less than the OH⁻ ion concentration decreases, the pH of the solution 1) decreases 2) increases 3) remains the same </td>	 8. Which statement correctly describes a solution with a pH of 9? 1) It has a higher concentration of H₃O⁺ than OH⁻ and causes litmus to turn blue. 2) It has a higher concentration of OH⁻ than H₃O⁺ and causes litmus to turn blue. 3) It has a higher concentration of H₃O⁺ than OH⁻ and causes methyl orange to turn yellow. 4) It has a higher concentration of OH⁻ than H₃O⁺ and causes methyl orange to turn red. 9. Which of these pH numbers indicates the highest level of acidity? 1) 5 2) 8 3) 10 4) 12 10. Which of these 1 M solutions will have the highest pH? 1) NaOH 3) HCl 2) CH₃OH 4) NaCl 11. Which relationship is present in a solution tha has a pH of 7? 1) [H⁺] = [OH⁻] 2) [H⁺] > [OH⁻] 3) [H⁺] < [OH⁻] 4) [H⁺] + [OH⁻] = 7 12. Which could be the pH of a solution whose H O⁺ ion concentration is less than the OH⁻ ion concentration decreases, the pH of the solution 1) decreases 2) increases 3) remains the same
pH of 6. How many times greater is the hydronium ion concentration in solution <i>A</i> than the hydronium ion concentration in solution <i>Z</i> ?	

(OH [−] and cause	es litmus	to turn blue.		
2) I	t has a higher	concentra	ation of OH ⁻ than		
H	H ₃ O ⁺ and causes litmus to turn blue.				
3) I	t has a higher	concentra	ation of H ₃ O ⁺ than		
()	OH ⁻ and cause vellow.	es methyl	orange to turn		
4) I	t has a higher	concentra	ation of OH ⁻ than		
F F	H ₃ O ⁺ and caused.	ses methy	l orange to turn		
9. Whi high	ch of these pH lest level of ac	I number idity?	s indicates the		
1) 5	5 2) 8	3) 10	4) 12		
10. Wl hig	nich of these 1 shest pH?	M soluti	ons will have the		
1)	NaOH	3) H	[C]		
2)	CH ₃ OH	4) N	aCl		
11. Wł has	nich relationsh a pH of 7?	ip is pres	ent in a solution th	at	
1) 2) 3) 4)	$[H^+] = [OH^-]$ $[H^+] > [OH^-]$ $[H^+] < [OH^-]$ $[H^+] + [OH^-]$	= 7			
12. WI O ⁺ coi	nich could be t ion concentra ncentration?	the pH of ttion is le	`a solution whose H ss than the OH [−] ior	H3 1	
1)	9 2) 2	3) 3	4) 4		

- 3. As the H_3O^+ ion concentration of a solution increases and the OH- concentration decreases, the pH of the solution
 - 1) decreases

- 2) increases
- 3) remains the same

14. A sample of pure water contains	14.	А	sampl	le of	pure	water	contains
-------------------------------------	-----	---	-------	-------	------	-------	----------

- 1) neither OH⁻ ions nor H₃O⁺ ions
- 2) equal concentrations of OH⁻ and H₃O⁺ ions
- 3) a larger concentration of H_3O^+ ions than OH^- ions
- 4) a smaller concentration of H_3O^+ ions than OH^- ions
- 15. What is the H₃O⁺ ion concentration of a solution that has an OH⁻ ion concentration of 1.0×10^{-3} M?
 - 1) 1.0×10^{-3} M 3) 1.0×10^{-11} M
 - 2) 1.0×10^{-7} M 4) 1.0×10^{-14} M
- 16. A solution has a hydroxide ion concentration of 1×10^{-5} M. What is the hydrogen ion concentration of the solution?
 - 1) 1×10^{-1} M 3) 1×10^{-9} M 2) 1×10^{-5} M 4) 1×10^{-14} M
- 17. If a given solution at 298 K contains $[H^+] = 1.0 \times 10^{-9}$, what is the $[OH^-]$?
 - 1) 1.0×10^{-1} 3) 1.0×10^{-9} 2) 1.0×10^{-5} 4) 1.0×10^{-14}
- 18. What is the pH of a 0.001 M KOH solution?

1) 14 2) 11 3) 3 4) 7

19. What is the OH⁻ ion concentration, in moles per liter, of a solution with a pH of 7?

1)	7	3)	1	\times	10^{-7}
2)	14	4)	1	×	10^{-14}

20. What is the H⁺ ion concentration of an aqueous solution that has a pH of 11?

1) $1.0 \times 10^{-11} \text{ mol/L}$ 2) $1.0 \times 10^{-3} \text{ mol/L}$

- 3) $3.0 \times 10^{-1} \text{ mol/L}$
- 4) $11 \times 10^{-1} \text{ mol/L}$
- 21. An aqueous solution with a pH of 4 would have a hydroxide ion concentration of

1) $1 \times 10^{-4} \text{ mol/L}$ 3) $1 \times 10^{-10} \text{ mol/L}$ 2) $1 \times 10^{-7} \text{ mol/L}$ 4) $1 \times 10^{-14} \text{ mol/L}$ 22. What is the pH of a solution with a hydroxide ion concentration of 0.001 mole per liter?

1) 1 2) 7 3) 3 4) 11

23. Given the equation:

 $NaOH(s) \rightarrow Na^{+}(aq) + OH^{-}(aq)$

What is the OH(aq) concentration in a 0.001 M solution of NaOH?

- 1) 1 M 3) 0.001 M
- 2) 2 M 4) 0.002 M
- 24. What is the pH of a 0.10 M solution of NaOH?
 - 1) 1 2) 2 3) 13 4) 14
- 25. As the hydrogen ion concentration of an aqueous solution increases, the hydroxide ion concentration of this solution will
 - 1) decrease 3) remain the same

2) increase

- 26. What is the pH of a 0.001 M HNO₃ solution?
 - 1) 1 2) 2 3) 3 4) 11
- 27. The [H₃O⁺] of a solution is 1×10^{-8} . This solution has a pH of
 - 1) 6, which is acidic
 - 2) 8, which is basic
 - 3) 6, which is basic
 - 4) 8, which is acidic
- 28. The pH of a 0.1 M solution is 11. What is the concentration of H₃O⁺ ions, in moles per liter?
 - 1) 1×10^{-1} 3) 1×10^{-11}
 - 2) 1×10^{-3} 4) 1×10^{-13}