1. Compared to a solution with a pH value of 7 , a solution with a thousand times greater hydronium ion concentration has a pH value of
1) 10
2) 7
3) 3
4) 4
2. Which change in the H^{+}ion concentration of an aqueous solution represents a decrease of one unit on the pH scale?
1) a tenfold increase
2) a tenfold decrease
3) a hundredfold increase
4) a hundredfold decrease
3. The pH of a solution is 7 . When acid is added to the solution, the hydronium ion concentration becomes 100 times greater. What is the pH of the new solution?
1) 1
2) 5
3) 9
4) 14
4. When the pH of an aqueous solution is changed from 1 to 2 , the concentration of hydronium ions in the solution is
1) decreased by a factor of 2
2) decreased by a factor of 10
3) increased by a factor of 2
4) increased by a factor of 10
5. When the hydronium ion concentration of a solution is increased by a factor of 10 , the pH value of the solution
1) decreases 1 pH unit
2) decreases 10 pH units
3) increases 1 pH unit
4) increases 10 pH units
6. As the pH of a solution is changed from 3 to 6 , the concentration of hydronium ions
1) increases by a factor of 3
2) increases by a factor of 1000
3) decreases by a factor of 3
4) decreases by a factor of 1000
7. Solution A has a pH of 3 and solution Z has a pH of 6 . How many times greater is the hydronium ion concentration in solution A than the hydronium ion concentration in solution Z ?
1) 100
2) 2
3) 3
4) 1000
8. Which statement correctly describes a solution with a pH of 9 ?
1) It has a higher concentration of $\mathrm{H}_{3} \mathrm{O}^{+}$than OH^{-}and causes litmus to turn blue.
2) It has a higher concentration of OH^{-}than $\mathrm{H}_{3} \mathrm{O}^{+}$and causes litmus to turn blue.
3) It has a higher concentration of $\mathrm{H}_{3} \mathrm{O}^{+}$than OH^{-}and causes methyl orange to turn yellow.
4) It has a higher concentration of OH^{-}than $\mathrm{H}_{3} \mathrm{O}^{+}$and causes methyl orange to turn red.
9. Which of these pH numbers indicates the highest level of acidity?
1) 5
2) 8
3) 10
4) 12
10. Which of these 1 M solutions will have the highest pH ?
1) NaOH
2) $\mathrm{CH}_{3} \mathrm{OH}$
3) HCl
4) NaCl
11. Which relationship is present in a solution that has a pH of 7 ?
1) $\left[\mathrm{H}^{+}\right]=\left[\mathrm{OH}^{-}\right]$
2) $\left[\mathrm{H}^{+}\right]>\left[\mathrm{OH}^{-}\right]$
3) $\left[\mathrm{H}^{+}\right]<\left[\mathrm{OH}^{-}\right]$
4) $\left[\mathrm{H}^{+}\right]+\left[\mathrm{OH}^{-}\right]=7$
12. Which could be the pH of a solution whose H_{3} O^{+}ion concentration is less than the OH^{-}ion concentration?
1) 9
2) 2
3) 3
4) 4
13. As the $\mathrm{H}_{3} \mathrm{O}^{+}$ion concentration of a solution increases and the OH^{-}concentration decreases, the pH of the solution
1) decreases
2) increases
3) remains the same
14. A sample of pure water contains
1) neither OH^{-}ions nor $\mathrm{H}_{3} \mathrm{O}^{+}$ions
2) equal concentrations of OH^{-}and $\mathrm{H}_{3} \mathrm{O}^{+}$ ions
3) a larger concentration of $\mathrm{H}_{3} \mathrm{O}^{+}$ions than OH^{-}ions
4) a smaller concentration of $\mathrm{H}_{3} \mathrm{O}^{+}$ions than OH^{-}ions
15. What is the $\mathrm{H}_{3} \mathrm{O}^{+}$ion concentration of a solution that has an OH^{-}ion concentration of $1.0 \times 10^{-3} \mathrm{M}$?
1) $1.0 \times 10^{-3} \mathrm{M}$
2) $1.0 \times 10^{-7} \mathrm{M}$
3) $1.0 \times 10^{-11} \mathrm{M}$
4) $1.0 \times 10^{-14} \mathrm{M}$
16. A solution has a hydroxide ion concentration of $1 \times 10^{-5} \mathrm{M}$. What is the hydrogen ion concentration of the solution?
1) $1 \times 10^{-1} \mathrm{M}$
2) $1 \times 10^{-5} \mathrm{M}$
3) $1 \times 10^{-9} \mathrm{M}$
4) $1 \times 10^{-14} \mathrm{M}$
17. If a given solution at 298 K contains $\left[\mathrm{H}^{+}\right]=$ 1.0×10^{-9}, what is the $\left[\mathrm{OH}^{-}\right]$?
1) 1.0×10^{-1}
2) 1.0×10^{-5}
3) 1.0×10^{-9}
4) 1.0×10^{-14}
18. What is the pH of a 0.001 M KOH solution?
1) 14
2) 11
3) 3
4) 7
19. What is the OH^{-}ion concentration, in moles per liter, of a solution with a pH of 7 ?
1) 7
2) 14
3) 1×10^{-7}
4) 1×10^{-14}
20. What is the H^{+}ion concentration of an aqueous solution that has a pH of 11 ?
1) $1.0 \times 10^{-11} \mathrm{~mol} / \mathrm{L}$
2) $1.0 \times 10^{-3} \mathrm{~mol} / \mathrm{L}$
3) $3.0 \times 10^{-1} \mathrm{~mol} / \mathrm{L}$
4) $11 \times 10^{-1} \mathrm{~mol} / \mathrm{L}$
21. An aqueous solution with a pH of 4 would have a hydroxide ion concentration of
1) $1 \times 10^{-4} \mathrm{~mol} / \mathrm{L}$
2) $1 \times 10^{-7} \mathrm{~mol} / \mathrm{L}$
3) $1 \times 10^{-10} \mathrm{~mol} / \mathrm{L}$
4) $1 \times 10^{-14} \mathrm{~mol} / \mathrm{L}$
22. What is the pH of a solution with a hydroxide ion concentration of 0.001 mole per liter?
1) 1
2) 7
3) 3
4) 11
23. Given the equation:

$$
\mathrm{NaOH}(\mathrm{~s}) \rightarrow \mathrm{Na}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})
$$

What is the $\mathrm{OH}(\mathrm{aq})$ concentration in a 0.001 M solution of NaOH ?

1) 1 M
2) 2 M
3) 0.001 M
4) 0.002 M
24. What is the pH of a 0.10 M solution of NaOH ?
1) 1
2) 2
3) 13
4) 14
25. As the hydrogen ion concentration of an aqueous solution increases, the hydroxide ion concentration of this solution will
1) decrease
2) remain the same
3) increase
26. What is the pH of a $0.001 \mathrm{M} \mathrm{HNO}_{3}$ solution?
1) 1
2) 2
3) 3
4) 11
27. The $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$of a solution is 1×10^{-8}. This solution has a pH of
1) 6 , which is acidic
2) 8 , which is basic
3) 6 , which is basic
4) 8 , which is acidic
28. The pH of a 0.1 M solution is 11 . What is the concentration of $\mathrm{H}_{3} \mathrm{O}^{+}$ions, in moles per liter?
1) 1×10^{-1}
2) 1×10^{-3}
3) 1×10^{-11}
4) 1×10^{-13}
