	-)
1. Given the redox reaction: $Fe^{+2}_{(aq)} + Zn_{(s)} \rightarrow Zn^{+2}_{(aq)} + Fe_{(s)}$ Which species is oxidized?	
1. $Fe_{(s)}$ 2. $Fe^{+2}_{(aq)}$ 3. $Zn_{(s)}$ 4. $Zn^{+2}_{(aq)}$	
<u>2</u> . Given the redox reaction: $2I^{-1}_{(aq)} + Br_{2(l)} \rightarrow 2Br^{-1}_{(aq)} + I_{2(s)}$ What occurs during this reaction:	
1. The I $^{-1}$ ion is oxidized, and its oxidation number increases	
2. The I $^{-1}$ ion is oxidized, and its oxidation number decreases	
 The I ⁻¹ ion is reduced, and its oxidation number increases The I ⁻¹ ion is reduced, and its oxidation number decreases 	
3. Given the reaction: $Zn_{(s)}$ + 2HCl _(aq) → $ZnCl_{2(aq)}$ + H _{2(g)} Which equation represents the correct oxidation half-reaction?	
1. $Zn_{(s)} \rightarrow Zn^{+2} + 2e^{-}$ 3. $Zn^{+2} + 2e^{-} \rightarrow Zn_{(s)}$	
2. $2H^+ + 2e^- \rightarrow H_{2(g)}$ 4. $2Cl^- \rightarrow Cl_{2(g)} + 2e^-$	
4. According to Reference Table J, which redox reaction occurs spontaneously?	
1. $Cu_{(s)}$ + $2H^+ \rightarrow Cu^{+2}$ + $H_{2(g)}$ 3. $Ag_{(s)}$ + $2H^+ \rightarrow 2Ag^+$ + $H_{2(g)}$	
2. $Mg_{(s)}$ + $2H^+ \rightarrow Mg^{+2}$ + $H_{2(g)}$ 4. $Hg_{(l)}$ + $2H^+ \rightarrow Hg^{+2}$ + $H_{2(g)}$	
5. Which quantities are conserved in all oxidation-reduction reactions? 1. charge, only 2. mass, only 3. both charge & mass 4. neither charge reduction reactions?	nor mass
 6. Given the overall reaction for the lead-acid battery: Pb + PbO₂ + 2H₂SO₄ ⇒ 2PbSO₄ Which element changes oxidation state when electric energy is produced? 1. hydrogen 2. oxygen 3. sulfur 4. lead 	+ H ₂ O
7. Which reduction half-reaction has a standard electrode potential (E^0) of 1.50 volts?	
1. Au^{3+} + $\operatorname{3e}^{-}$ \rightarrow $\operatorname{Au}_{(s)}$ 3. Co^{2+} + $\operatorname{2e}^{-}$ \rightarrow $\operatorname{Co}_{(s)}$	
2. Al^{3+} + $3e^- \rightarrow Al_{(s)}$ 4. Ca^{2+} + $2e^- \rightarrow Ca_{(s)}$	
8. Given the reaction: $2Li_{(s)} + Cl_{2(g)} \rightarrow 2LiCl_{(s)}$ As the reaction takes place, the $Cl_{2(g)}$ will:	
1. gain electrons2. lose electrons3. gain protons4. lose protons	
9. Given the balanced equation: $2Al_{(s)} + 6H^+_{(aq)} \rightarrow 2Al^{3+}_{(aq)} + 3H_{2(g)}$ When 2 moles of $Al_{(s)}$ completely reacts, what is the total number of moles of electrons transform $Al_{(s)}$ to $H^+_{(aq)}$?	insferred
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
11. Which species acts as the anode when the reaction $Zn_{(s)} + Pb^{+2}_{(aq)} \rightarrow Zn^{+2}_{(aq)} + Pb_{(s)}$ of	ccurs in
an electrochemical cell?	

1. $Zn_{(s)}$ 2. $Zn^{+2}_{(aq)}$ 3. $Pb_{+2(aq)}$ 4. $Pb_{(s)}$

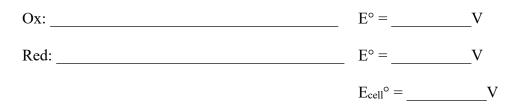
- 12. In an electrolytic cell, the negative electrode is called the
 - 1. anode, at which oxidation occurs
 - 2. anode, at which reduction occurs
- 3. cathode, at which oxidation occurs
 - 4. cathode, at which reduction occurs

13. A student wishes to set up an electrochemical cell. The following list of materials and equipment will be used:

- two 250-mL beakers
- wire
- one piece of Zn metal
- 125 mL of 0.01 M Zn(NO₃)₂
- For the cell to operate properly, the student will also need:
- 1. an anode 2. a cathode 3. an external path for electrons 4. a salt bridge
- 14. Which balanced equation represents a redox reaction? 1. $AgNO_3 + NaCl \rightarrow AgCl + NaNO_3$ 3. $CuO + CO \rightarrow Cu + CO_2$ 2. $BaCl_2 + K_2CO_3 \rightarrow BaCO_3 + 2 KCl$ 4. $HCl + KOH \rightarrow KCl + H_2O$
- 15. Where does oxidation occur in an electrochemical cell?
 - 1. at the cathode in both an electrolytic cell and voltaic cell
 - 2. at the cathode in an electrolytic cell and at the anode in a voltaic cell
 - 3. at the anode in both an electrolytic cell and a voltaic cell
 - 4. at the anode in an electrolytic cell and the cathode in a voltaic cell

16. Which energy transformation occurs when an electrolytic cell is in operation?

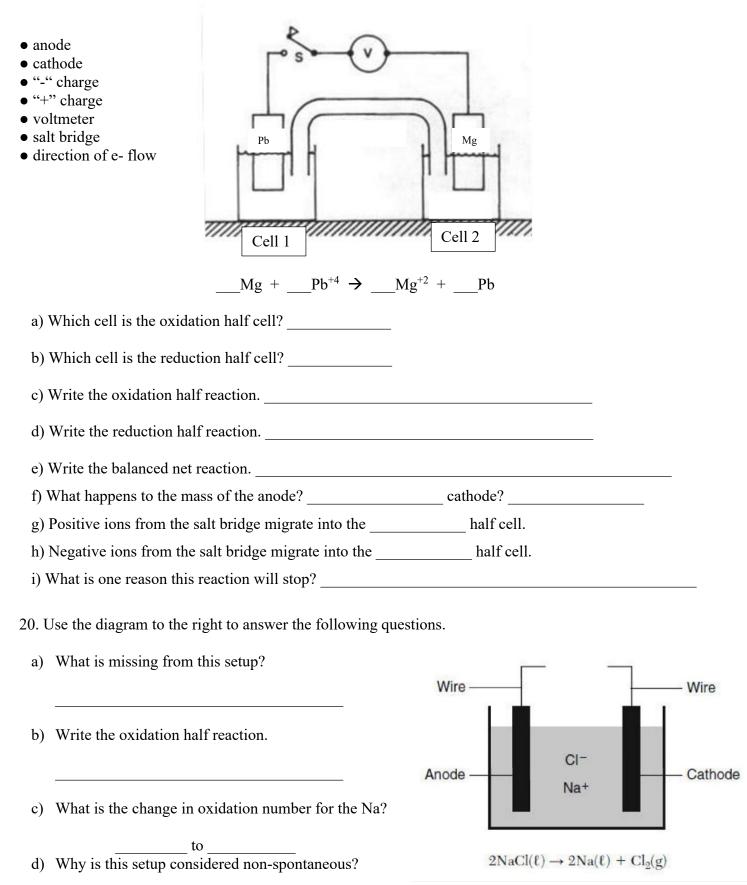
- 1. chemical energy \rightarrow electrical energy 3. light energy \rightarrow heat energy
- 2. electrical \rightarrow chemical energy 4. light energy \rightarrow chemical energy


17. Which statement describes an voltaic cell?

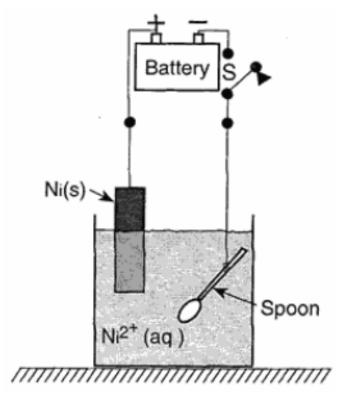
- 1. chemical energy is used to produce an electrical change
- 2. chemical energy is used to produce a thermal change
- 3. electrical energy is used to produce a chemical change
- 4. thermal energy is used to produce a chemical change

Short Answer:

18. Given the reaction:	$_{n^{+4}(aq)} +$	$\underline{Cr}_{(s)} \rightarrow$	<u>Sn⁺²(aq)</u> +	Cr ⁺³ (aq)
-------------------------	-------------------	------------------------------------	------------------------------	-----------------------


a) Write the half reactions and calculate the E° for each half cell.

c) Write the balanced redox reaction:


- voltmeter
- switch
- one piece of Pb metal
- 125 mL of 0.01 M Pb(NO₃)₂

19. Using a Mg/Pb battery, label all the appropriate parts on the diagram at the right, and then use the unbalanced redox reaction to answer the following questions:

- 21) A student wishes to electroplate a metal spoon with Nickel(s).
 - a) What part of the setup must be included in order get the nickel metal plated onto the spoon?
 - b) When plating any object, what is the one requirement of that object?
 - c) Label the following using the electrolytic cell below:
 - the anode
 - positive charge
 - the cathode
 - negative charge
 - Draw the flow of electrons.
 - Draw an arrow pointing to where the Ni⁺²(aq) ions will be attracted to
- d) Write the half reaction that occurs at the anode:

Write the half reaction that occurs at the cathode:

