Name \qquad Honors: Stoichiometry of Equations
For all mole conversion problems show ALL of your work, including showing which units cancel out by putting a slash through them.

1. Calculate the number of moles of hydrogen chloride produced from 10.0 moles of hydrogen $\mathrm{H}_{2}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{HCl}(\mathrm{g})$
2. Calculate the number of moles of chlorine needed to form 14.0 moles of iron III chloride. $2 \mathrm{Fe}(\mathrm{s})+3 \mathrm{Cl}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{FeCl}_{3}(\mathrm{~s})$
3. Calculate the number of grams of NO_{2} that are produced from 4.00 moles of NO .

$$
2 \mathrm{NO}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NO}_{2}(\mathrm{~g})
$$

4. Calculate the moles of oxygen produced from the decomposition of 75.0 g of potassium chlorate. $2 \mathrm{KClO}_{3}(\mathrm{~s}) \rightarrow 2 \mathrm{KCl}(\mathrm{s})+3 \mathrm{O}_{2}(\mathrm{~g})$
5. How many liters of carbon monoxide are needed to react with 4.80 g of oxygen gas to produce carbon dioxide? $2 \mathrm{CO}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{CO}_{2}(\mathrm{~g})$
6. Calculate the number of liters of oxygen gas needed to produce 15.0 liters of nitrogen III oxide.

$$
2 \mathrm{~N}_{2}(\mathrm{~g})+3 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{~N}_{2} \mathrm{O}_{3}(\mathrm{~g})
$$

7. Calculate the mass of silver needed to react with chlorine to produce 84.0 grams of silver chloride. (hint: write a balanced equation first)
