1) An unsaturated solution is formed when 80. grams of a salt is dissolved in 100. grams of water at $40 .{ }^{\circ} \mathrm{C}$. This salt could be
2) KCl
3) KNO_{3}
4) NaCl
5) NaNO_{3}
6) According to Reference Table G, which solution is saturated at $30^{\circ} \mathrm{C}$?
7) 12 grams of KClO_{3} in 100 grams of water
8) 12 grams of KClO_{3} in 200 grams of water
9) 30 grams of NaCl in 100 grams of water
10) 30 grams of NaCl in 200 grams of water
11) A solution is formed by dissolving 45 grams of $\mathrm{NH}_{4} \mathrm{Cl}$ in 100 grams of $\mathrm{H}_{2} \mathrm{O}$ at 70 ㅇ․ Which statement correctly describes this solution?
12) $\mathrm{NH}_{4} \mathrm{Cl}$ is the solute, and the solution is saturated.
13) $\mathrm{NH}_{4} \mathrm{Cl}$ is the solute, and the solution is unsaturated.
14) $\mathrm{NH}_{4} \mathrm{Cl}$ is the solvent, and the solution is saturated.
15) $\mathrm{NH}_{4} \mathrm{Cl}$ is the solvent, and the solution is unsaturated.
16) Which is a saturated solution?
17) $40 \mathrm{~g} \mathrm{NH}_{4} \mathrm{Cl}$ in 100 g water at $50^{\circ} \mathrm{C}$
18) $2 \mathrm{~g} \mathrm{SO}_{2}$ in 100 g water at $10^{\circ} \mathrm{C}$
19) 52 g KCl in 100 g water at $80^{\circ} \mathrm{C}$
20) 120 g KI in 100 g water at $20^{\circ} \mathrm{C}$
21) A solution contains 14 grams of KCl in 100. grams of water at $40^{\circ} \mathrm{C}$. What is the minimum amount of KCl that must be added to make this a saturated solution?
22) $14 \mathrm{~g} \mathrm{2)} 19 \mathrm{~g}$
23) 25 g
24) 44 g
25) According to Reference Table G, approximately how many grams of KClO_{3} are needed to saturate 100 grams of $\mathrm{H}_{2} \mathrm{O}$ at $40^{\circ} \mathrm{C}$?
26) 6
27) 16
28) 38
29) 47
30) A solution containing 60. grams of NaNO_{3} completely dissolved in 50. grams of water at $50^{\circ} \mathrm{C}$ is classified as being
31) saturated
32) supersaturated
33) dilute and unsaturated
34) dilute and saturated
35) A solution contains 70 grams of NaNO_{3} in 100 grams of water at $10^{\circ} \mathrm{C}$. How many additional grams of NaNO_{3} are required to saturate this solution?
36) 10
37) 20
38) 60
39) 70
40) Base your answer to the following question on the diagram below which represents the solubility curve of salt X . The four points on the diagram represent four solutions of salt X.

Which point represents a supersaturated solution of salt X ?

1) A
2) B
3) C
4) D
5) A solution contains 35 grams of KNO_{3} dissolved in 100 grams of water at $40^{\circ} \mathrm{C}$. How much more KNO_{3} would have to be added to make it a saturated solution?
6) 29 g
7) 24 g
8) 12 g
9) 4 g
10) Based on Reference Table G, when 100 grams of water saturated with KNO_{3} at $70^{\circ} \mathrm{C}$ is cooled to $25^{\circ} \mathrm{C}$, the total number of grams of KNO_{3} that will precipitate is
11) 40
12) 45
13) 80
14) 95
15) A saturated solution of NaNO_{3} is prepared at $60 .{ }^{\circ} \mathrm{C}$ using 100. grams of water. As this solution is cooled to $10 . .^{\circ} \mathrm{C}$, NaNO_{3} precipitates (settles) out of the solution. The resulting solution is saturated. Approximately how many grams of NaNO_{3} settled out of the original solution?
16) 46 g
17) 61 g
18) 85 g
19) 126 g
20) What is the mass of $\mathrm{NH}_{4} \mathrm{Cl}$ that must dissolve in 200. grams of water at $50 .{ }^{\circ} \mathrm{C}$ to make a saturated solution?
21) 26 g
22) 42 g
23) 84 g
24) 104 g
25) When 5 grams of KCl are dissolved in 50. grams of water at $25^{\circ} \mathrm{C}$, the resulting mixture can be described as
26) heterogeneous and unsaturated
27) heterogeneous and supersaturated
28) homogeneous and unsaturated
29) homogeneous and supersaturated
30) What is the total mass of KNO_{3} that must be dissolved in 50 . grams of $\mathrm{H}_{2} \mathrm{O}$ at $60 .{ }^{\circ} \mathrm{C}$ to make a saturated solution?
31) 32 g
32) 53 g
33) 64 g
34) 106 g
