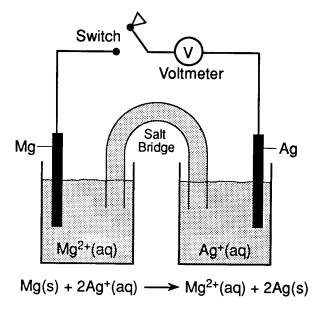
- 1) A voltaic cell spontaneously converts
 - A) electrical energy to chemical energy
 - B) chemical energy to electrical energy
 - C) electrical energy to nuclear energy
 - D) nuclear energy to electrical energy

2) Given the redox reaction in an electrochemical cell:

 $Ni(s) + Pb^{2+}(aq) \leftrightarrow Ni^{2+}(aq) + Pb(s)$


A salt bridge is used to connect

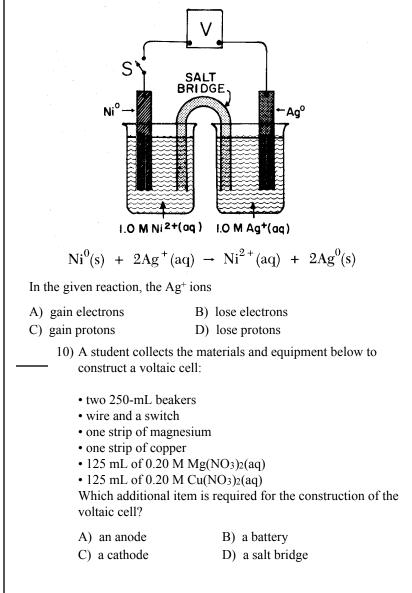
A) Ni(s) and Pb(s) B) $Pb^{2+}(aq)$ and $Ni^{2+}(aq)$

C) Ni(s) and Ni²⁺(aq) D) $Pb^{2+}(aq)$ and Pb(s)

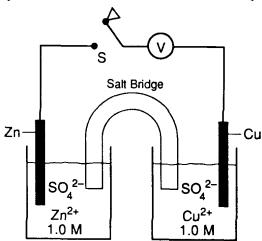
3) Which statement is true for any electrochemical cell?

- A) Oxidation occurs at the anode, only.
- B) Reduction occurs at the anode, only.
- C) Oxidation occurs at both the anode and the cathode.
- D) Reduction occurs at both the anode and the cathode.
- 4) In an oxidation-reduction reaction, the number of electrons lost is
 - A) equal to the number of electrons gained
 - B) equal to the number of protons gained
 - C) less than the number of electrons gained
 - D) less than the number of protons gained
- 5) Base your answer to the following question on the equation and diagram below represent an electrochemical cell at 298 K and 1 atmosphere.

Which species is oxidized when the switch is closed?


A) Mg(s)	B) $Mg^{2+}(aq)$
C) $Ag(s)$	D) $Ag^+(aq)$
6) Which equation s	hows conservation of charge?
A) Fe \rightarrow Fe ²⁺ + e	e^- B) Fe + 2e ⁻ \rightarrow Fe ²⁺
C) Fe \rightarrow Fe ²⁺ + 2	2e ⁻ D) Fe + 2e ⁻ \rightarrow Fe ³⁺

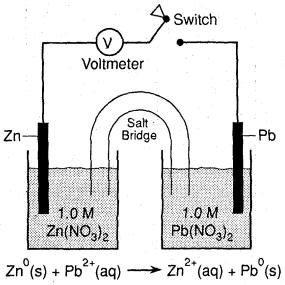
- 7) The redox reaction in a battery during discharge can best be described as
 - A) non-spontaneous and occurring in a chemical cell
 - B) spontaneous and occurring in a chemical cell
 - C) non-spontaneous and occurring in an electrolytic cell
 - D) spontaneous and occurring in an electrolytic cell
- 8) Given the overall cell reaction:


 $Zn(s) + 2 Ag^{+}(aq) \rightarrow Zn^{2+}(aq) + 2 Ag(s)$

Which will occur as the cell operates?

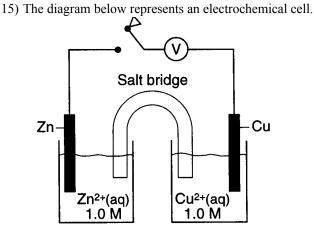
- A) The amount of Zn(s) will increase.
- B) The amount of Ag(s) will decrease.
- C) The concentration of $Zn^{+2}(aq)$ will increase.
- D) The concentration of $Ag^+(aq)$ will increase.
- 9) Base your answer to the following question on the diagram of the chemical cell at 298 K and on the equation below.

Base your answers to questions **11** and **12** on the diagram below which represents a chemical cell at 298 K and 1 atmosphere.


11)Which species represents the cathode?

A) Zn B) Zn^{2+} C) Cu D) Cu^{2+}

12) When switch S is closed, electrons in the external circuit will flow from


A) Zn to Zn^{2+}	B) Zn to Cu
C) Cu to Zn^{2+}	D) Cu to Zn

13) Base your answer to the following question on the diagram of the chemical cell shown below. The reaction occurs at 1 atmosphere and 298 K.

When the switch is closed, what occurs?

- A) Pb is oxidized and electrons flow to the Zn electrode.
- B) Pb is reduced and electrons flow to the Zn electrode.
- C) Zn is oxidized and electrons flow to the Pb electrode.
- D) Zn is reduced and electrons flow to the Pb electrode.
 - 14) Which component of an electrochemical cell is correctly paired with its function?
 - A) external conductor allows the solutions to mix
 - B) external conductor permits the migration of ions
 - C) salt bridge allows the solutions to mix
 - D) salt bridge permits the migration of ions

What occurs when the switch is closed?

- A) Zn is reduced.
- B) Cu is oxidized.
- C) Electrons flow from Cu to Zn.
- D) Electrons flow from Zn to Cu.

16) Given the balanced equation:

 $3 \operatorname{Fe}^{3+}(aq) + \operatorname{Al}(s) \rightarrow 3 \operatorname{Fe}^{2+}(aq) + \operatorname{Al}^{3+}(aq)$

What is the total number of moles of electrons lost by 2 moles of Al(s)?

A) 1 mole	B) 6 moles
C) 3 moles	D) 9 moles

17) Which ionic equation is balanced?

- A) $Fe^{3+} + Al \rightarrow Fe^{2+} + Al^{3+}$
- B) $Fe^{3+} + 3Al \rightarrow Fe^{2+} + 3Al^{3+}$
- C) $3Fe^{3+} + Al \rightarrow 3Fe^{2+} + Al^{3+}$
- D) $3Fe^{3+} + Al \rightarrow Fe^{2+} + 3Al^{3+}$